这里引入百度百科的解释:
在非空树中:
树的种类
代码如下(示例):
package com.lingo.tree;
import java.util.LinkedList;
import java.util.Queue;
public class BinarySearchTreeT<E extends Comparable<E>> {
private class Node {
public E e;
public Node left;
public Node right;
public Node(E e) {
this.e = e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BinarySearchTreeT() {
this.root = null;
size = 0;
}
//获取大小
public int getSize() {
return size;
}
//判断空树
public boolean isEmpty() {
return size == 0;
}
//添加元素
public void add(E e) {
root = add(root, e);
}
//递归添加
private Node add(Node node, E e) {
//递归中止条件
if (node == null) {
size++;
return new Node(e);
}
if (e.compareTo(node.e) < 0) {
node.left = add(node.left, e);
return node;
} else if (e.compareTo(node.e) > 0) {
node.right = add(node.right, e);
return node;
} else {
//相同元素不考虑
//这里也可以规定相同元素都存放在左子树或右子树
throw new IllegalArgumentException("不允许添加相同元素");
}
}
//删除元素
public void remove(E e) {
root = remove(root, e);
}
private Node remove(Node node, E e) {
if (node == null) {
throw new IllegalArgumentException("无此树");
}
if (e.compareTo(node.e) < 0) {
node.left = remove(node.left, e);
return node;
} else if (e.compareTo(node.e) > 0) {
node.right = remove(node.right, e);
return node;
} else {
//找到了
//1.左子树为空
if (node.left == null) {
Node current = node.right;
size--;
node.right = null;
return current;
}
//右子树为空
if (node.right == null) {
Node current = node.left;
size--;
node.left = null;
return current;
}
//左右子树都不为空
//此时可以选取左子树的最大值或右子树的最小值作为删除节点后的新父节点
//我们选取右子树的最小值
Node currentNode = minNode(node.right);
currentNode.right = removeMinNode(node.right);
currentNode.left = node.left;
node.left = null;
node.right = null;
return currentNode;
}
//删除元素有三种情况
}
private Node minNode(Node node) {
while (node.left != null) {
node = node.left;
}
return node;
}
private Node removeMinNode(Node node) {
if (node.left == null) {
Node currentNode = node.right;
node.right = null;
size--;
//返回删除后的新子树哦,容易出错 ==> 写成node。
return currentNode;
}
node.left = removeMinNode(node.left);
return node;
}
//查找元素
public boolean contains(E e) {
return contains(root, e) != null;
}
private Node contains(Node node, E e) {
if (node == null) {
return null;
}
if (e.compareTo(node.e) < 0) {
return contains(node.left, e);
} else if (e.compareTo(node.e) > 0) {
return contains(node.right, e);
} else {
return node;
}
}
//前序遍历
public void preOrder() {
System.out.println("前序遍历结果:");
preOrder(root);
System.out.println();
}
private void preOrder(Node node) {
if (node == null) {
return;
}
System.out.print(node.e + " ");
preOrder(node.left);
preOrder(node.right);
}
//中序遍历
public void inOrder() {
System.out.println("中序遍历结果:");
inOrder(root);
System.out.println();
}
private void inOrder(Node node) {
if (node == null) {
return;
}
inOrder(node.left);
System.out.print(node.e + " ");
inOrder(node.right);
}
//后序遍历
public void postOrder() {
System.out.println("后序遍历结果:");
postOrder(root);
System.out.println();
}
private void postOrder(Node node) {
if (node == null) {
return;
}
postOrder(node.left);
postOrder(node.right);
System.out.print(node.e + " ");
}
//层序遍历 需要借助队列的先进先出的特点
public void levelOrder() {
System.out.println("层序遍历结果:");
levelOrder(root);
System.out.println();
}
private void levelOrder(Node node) {
if (node == null) {
throw new IllegalArgumentException("二分搜索树为空!");
}
Queue<Node> queue = new LinkedList<>();
queue.add(node);
while (!queue.isEmpty()) {
Node remove = queue.remove();
System.out.print(remove.e + " ");
if (remove.left != null) {
queue.add(remove.left);
}
if (remove.right != null) {
queue.add(remove.right);
}
}
}
public static void main(String[] args) {
BinarySearchTreeT<Integer> searchTreeT = new BinarySearchTreeT<>();
searchTreeT.add(10);
searchTreeT.add(5);
searchTreeT.add(11);
searchTreeT.add(12);
searchTreeT.add(2);
searchTreeT.add(8);
searchTreeT.add(1);
searchTreeT.add(6);
searchTreeT.add(9);
searchTreeT.inOrder();
searchTreeT.levelOrder();
searchTreeT.postOrder();
searchTreeT.preOrder();
searchTreeT.remove(5);
System.out.println("删除节点值为5的节点后===");
searchTreeT.levelOrder();
}
}
输出结果:
public interface Set<E> {
void add(E e);
boolean contains(E e);
void remove(E e);
boolean isEmpty();
int getSize();
}
package com.lingo.set;
import com.lingo.search.BinarySearchTree;
/**
* 用二分搜索树实现Set集合
*
* @param <E>
*/
public class BSTSet<E extends Comparable<E>> implements Set<E> {
private BinarySearchTreeT binarySearchTree;
public BSTSet() {
binarySearchTree = new BinarySearchTree();
}
@Override
public void add(E e) {
binarySearchTree.add(e);
}
@Override
public boolean contains(E e) {
return binarySearchTree.contains(e);
}
@Override
public void remove(E e) {
binarySearchTree.remove(e);
}
@Override
public boolean isEmpty() {
return binarySearchTree.isEmpty();
}
@Override
public int getSize() {
return binarySearchTree.getSize();
}
}
Node{
K key;
V value;
Node left;
Node right;
}
package com.lingo.map;
/**
* 集合映射
*
* @param <K> key值
* @param <V> value值
*/
public interface Map<K, V> {
void put(K key, V value);
V remove(K key);
void set(K key, V newValue);
boolean contains(K key);
int getSize();
boolean isEmpty();
V get(K key);
}
package com.lingo.map;
public class BSTMap<K extends Comparable<K>, V> implements Map<K, V> {
private class Node {
public K key;
public V value;
public Node left;
public Node right;
public Node(K key, V value) {
this.key = key;
this.value = value;
left = null;
right = null;
}
}
private int size;
private Node root;
public BSTMap() {
size = 0;
root = null;
}
@Override
public void put(K key, V value) {
root = put(root, key, value);
}
private Node put(Node node, K key, V value) {
//递归中止条件
if (node == null) {
size++;
return new Node(key, value);
}
if (key.compareTo(node.key) < 0) {
node.left = put(node.left, key, value);
} else if (key.compareTo(node.key) > 0) {
node.right = put(node.right, key, value);
} else {
//相等时 直接进行更新操作或进行抛出异常
node.value = value;
}
return node;
}
/**
* 随机删除一个节点 可能只含有左节点也可能只含有有节点也肯能左右节点都含有
* 将待删除节点的右子树的最小值作为该右子数的父节点
*
* @param key
* @return
*/
@Override
public V remove(K key) {
Node currentNode = getNode(root, key);
if (currentNode != null) {
root = remove(root, key);
return currentNode.value;
} else {
return null;
}
}
private Node remove(Node node, K key) {
//递归中止条件
if (node == null) {
return null;
}
if (key.compareTo(node.key) < 0) {
node.left = remove(node.left, key);
return node;
} else if (key.compareTo(node.key) > 0) {
node.right = remove(node.right, key);
return node;
} else {
//仅含有左子树
if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
//仅含有右子树
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
//即含有左子树又含有右子树
Node rightNode = node.right;
Node minNode = minNode(rightNode);
minNode.left = node.left;
minNode.right = removeMin(rightNode);
node.left = null;
node.right = null;
return minNode;
}
}
private Node minNode(Node node) {
Node current = node;
while (current.left != null) {
current = current.left;
}
return current;
}
/**
* @param node
* @return 返回该删除节点的根节点
*/
private Node removeMin(Node node) {
//递归中止条件
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
@Override
public void set(K key, V newValue) {
Node node = getNode(root, key);
if (node == null) {
throw new IllegalArgumentException("无key值");
}
node.value = newValue;
}
private Node getNode(Node node, K key) {
//递归中止条件
if (node == null) {
return null;
}
//判断
if (key.compareTo(node.key) < 0) {
return getNode(node.left, key);
} else if (key.compareTo(node.key) > 0) {
return getNode(node.right, key);
} else {
return node;
}
}
@Override
public boolean contains(K key) {
return getNode(root, key) != null;
}
@Override
public int getSize() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
@Override
public V get(K key) {
Node currentNode = getNode(root, key);
return currentNode != null ? currentNode.value : null;
}
}
因篇幅问题不能全部显示,请点此查看更多更全内容