易妖游戏网
您的当前位置:首页数单调性的常见方法

数单调性的常见方法

来源:易妖游戏网


存档编号

赣南师范学院科技学院

学士学位论文

判断函数单调 性的常见方法

系 别 数学与信息科学系 届 别 2012届 专 业 数学与应用数学 学 号 0000000000 姓 名 0000 指导老师 000000 完程日期

1

目 录

内容摘要···············································1 关键词·············································1 Abstract···············································1 Key words············································1 1.引言·················································2 2.函数单调性在数学整体中的重要地位·················2 2.1由函数的重要地位所决定······························2 2.2单调性本身的重要性··································2 2.3从学科学角度来看····································3 2.4从逻辑推理能力的培养来看····························3 2.5从数学思想方法的培养来看····························3 2.6单调性在中小学数学教学中的地位和作用················3 3.判断函数单调性的常见方法·····························4 3.1定义法··············································4 3.2直接法··············································5 3.3图像法··············································5 3.4分析法··············································6 3.5导数法··············································7 4总结·················································8 5 致谢·················································9 参考文献··············································10

0

内容摘要: 本文分析了函数单调性在中学数学中的重要地位,在此基础上,总结了判定函数单调性的几种重要方法,如:有定义法、图象法、分析法、导数法等.并通过几个例题说明了这几种方法的适用范围.

关键词: 函数 单调性 方法

Abstract: This paper analyzes the monotony of function in the middle school mathematics important position, on this foundation, summed up the decision function monotonicity methods, such as: definition, image method, analysis method, derivative method. And through several examples illustrate these methods applicable scope.

Keywords: Function Monotonicity Method

1

1.引言

函数是高中数学的中心内容,几乎渗透到高中数学的每一个角落,它不仅是一条重要的数学概念,而且是一种重要的数学思想.而函数的单调性则是函数的一条重要性质,是历年高考重点考查的内容,也是解决数学问题的有力工具.如果能充分发掘问题中的隐含条件,把问题化归到单调函数模型上去,合理巧妙地运用函数单调性,定会给你带来快捷的解题思路,同时也加强了对构造法解决问题的数学思维的培养,对完善认知结构方面也是大有裨益的.

2.函数单调性在数学整体中的重要地位

2.1由函数的重要地位所决定

函数是描述客观世界变化规律的重要模型,现实世界中的许多变化规律都可以用函数模型刻画;函数在数学以及各领域中有着极重要的地位和作用,不仅贯穿于高中整个代数体系,还是学生进一步学习高等数学的基础.单调性作为函数最重要的性质之一,其重要性和地位不言而喻.

2.2单调性本身的重要性

学生学习了函数概念后,首先就对函数单调性进行了研究,研究单调性的方法可迁移、类比到研究函数的奇偶性、周期性、对称性等;研究单调性可从多角度、多层次进行:对单调性概念的认识经历了直观感知、自然语言描述、数学符号语言描述三个过程,在此过程中,学生可以充分感受数学知识(单调性概念)的发生发展过程,这是一个引导学生认识数学、感受数学、理解数学基本脉络的很好载体.

2

2.3从学科角度来看

函数的单调性是学习不等式、数列、极限、导数等其它数学知识的基础,是解决数学问题的常用工具.

2.4从逻辑推理能力的培养来看

函数的单调性是学生学习函数概念后第一个用数学符号语言来刻画的概念,概念中首次出现了全称量词“任意”,这也是学生理解函数单调性的关键和难点,突破该关键的过程正是一个由特殊到一般的过渡,从中培养了学生的归纳推理能力,更重要的是培养了学生逻辑推理能力.

2.5从数学思想方法的培养来看

函数与曲线是贯穿中学数学的一对孪生姐妹,函数图像发现函数性质的直观载体.学生探索、研究函数的单调性,一直以函数图像为依托.所以说单调性的学习是渗透数形结合思想的重要素材.

2.6单调性在数学教学中的地位和作用

从知识本身来讲.学生对于函数单调性的学习共分为四个阶段,第一阶段是在小学的直观感知;第二阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有初步的感性认识;第三阶段是在高一用数学符号语言定义函数性质,学习并应用函数单调性的严格定义,从数和形两个方面加深对概念的理解;第四阶段则是选修系列的导数及其应用的学习,只是单调性学习的进一步深化和提高.可以说,高一所学单调性既是小学、初中学习的延续和深化,又为后续高三和大学的学习奠定了基础,可以说起着“承前启后”的重要作用.

3

3.判断函数单调性的常见方法

函数单调性的定义:一般的,设函数yf(x)的定义域为A,

IA,如对于区间内任意两个值x1

、x2 ,(1)当x1x2时,都

有f(x1)f(x2),那么就说yf(x)在区间I上是单调增函数,I称为函数的单调增区间;(2)当x1x2时,都有f(x1)f(x2),那么就说yf(x)在区间I上是单调减函数,I称为函数的单调减区间.

3.1定义法

用定义域判断函数单调性的步骤: ⑴ 取值:

在函数定义域的某一子区间I内任取两个不等变量x1 、x2,可设x1x2;

⑵ 作差(或商)变形:

作差f(x1)f(x2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形; ① 定号:

确定差f(x1)f(x2)的符号; ② 判断:

根据函数单调性定义进行判断并得出结论.

例1:已知函数f(x)x3x,判断f(x)在(-∞,+∞)上的单调性并证明.

解:任取 x1 、x2 ∈(-∞,+∞), x1x2,则:

4

f(x1)f(x2)(x1x1)(x2x2)(x1x2)(x1x2)(x1x2)(x1x2x1x21)(x1x2)[(x112x2)12223333

x2)]234∵x1 、x2 ∈(-∞,+∞),x1x2, ∴x1x20,(x112x2)1234x2)

2故f(x1)f(x2)0,即f(x1)f(x2) ∴f(x)在(-∞,+∞)上单调递增

3.2直接法(一次函数、二次函数、反比例函数的单调可直接说出)

⑴ 函数yf(x)的单调性相反

⑵ 函数yf(x)恒为正或恒为负时,函数yf(x)的单调性相反 ⑶ 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数

例2:判断函数yx11x在(0,+∞)内的单调性

1x解:设 y1x1 , y2 ,

∵y1在(0,+∞)上单调减,y2在(0,+∞)上单调减,

又根据函数单调性的直接法得:

yx11x在(0,+∞)内单调减

3.3图像法

在使用图像法时的说明:⑴首先求出函数的定义域 ⑵单调区间是定义域的子集

5

⑶定义x1 、x2的任意性

⑷自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数

例3:判断函数yx2的单调性? 解:首先判断yx2的定义域, 然后画出函数的图像如下图:

根据图像我们很容易判断函数yx2在[0,)单调增; 在(,0]单调减.

3.4分析法

对于复合函数单调性判断一般地有:

yf(u) 增 增 减 减 ug(x) 增 增 减 减 增 减 减 增 yf(x)6

例4:判断y12x3的单调性

解:令u2x3, ∵y1u在(0,+ ∞)单调减,在(-∞,0)单调增,

∞) 单调减

u(x)在(-∞,+

∴y12x3在(0,+ ∞)单调增,在(-∞,0)单调减.

(注:这种方法概括为“同减异增”)

3.5导数法

利用导函数的符号判别函数的单调性.

设函数yf(x)在某个区间内有导数,如果在这个区间内有

y'0,那么yf(x)为这个区间的增函数;如果在这个区间内有y'0,那么yf(x)为这个区间的减函数.

例5:确定函数

f(x)x2x42在哪个区间内是增函数,哪

个区间内是减函数?

2解:f'(x)(x2x4)'2x2

令2x20, 解得:x1.

∴当x ∈ [1,) 时,f'(x)0,f(x)是增函数. 令2x20, 解得:x1.

1]∴当x ∈ (, 时,f'(x)0,f(x)是减函数.

7

4 总结

函数单调性是高中数学的重要内容,通过研究函数的单调性不仅可以揭示函数值的变化特性,本文通过对几种常用的判别函数单调性的方法进行阐述,希望能增强运用函数知识解题的意识.利用上述的方法可以使我们的解题更简单明了,也是我们的增加了我们学习的乐趣.

8

5 致谢

如果说官是忙出来的,那么学问一定是闲出来的,这种闲,不是无所事事的闲,而是趁着在学校这块还算净土的地方,离开热闹、离开功利,离开一切泛政治化的慷慨激昂,走一条寂寞而幽深的道路,把整体意义上的人文取向、文明脉络、艺术哲学、生命顿悟,比较完整的补回来的闲;这种闲,没有外力逼迫,全靠内心把持.所以研究生期间,我“躲进小楼成一统”,喜欢自由的随着性子安排时间.在我看来,这么纯粹的时间,也许毕业后一辈子都不会再有了,为什么不洒脱飘逸一点呢?在什么阶段就努力做好这个阶段应该做的事情,能静下心来翻几本书也许受益终生.魅力与人格、思维高度与胸怀眼界,需要在学生时代就开始慢慢积累与沉淀.特色永远是一个人的生命,循规蹈矩必然导致无为和平庸.这一点上,我要特别感谢我得指导老师袁小平老师 ,是他给了我最自由的发挥空间,也是他,给了我最充分的提升平台.

9

参考文献

[1] 华东师范大学数学系 《数学分析》 高等教育出版社(第二版)上册2001.(10)

[2] 中华人民共和国教育部定制.普通高中数学课程标准(实验)[M].人民教育出版.2003.(12)

[3] 教育部基础教育司组织编.全日制义务教育数学课程标准解读(实验稿)[M].北京:北京师范入学出版社.2002.4(10)

[4] 庾国庆.高中数学巧思妙解专题训练[M].湖南教育出版社,1998.(163)

[5] 郭勇军.浅谈函数的单调性问题[J]中学数理化(教与学).2010年02期(45)

[6] 周培红.关于函数单调性问题的教学[J]福建中学数学.2010年02期(23)

10

因篇幅问题不能全部显示,请点此查看更多更全内容