(12)发明专利申请
(10)申请公布号 CN 1103439 A(43)申请公布日 2019.10.18
(21)申请号 201910700926.4(22)申请日 2019.07.31
(71)申请人 长春工业大学
地址 130000 吉林春市延安大街17号(72)发明人 邹豪豪 冉旭 朱巍巍 战思琪 (74)专利代理机构 北京远大卓悦知识产权代理
事务所(普通合伙) 11369
代理人 许小东(51)Int.Cl.
C22C 9/00(2006.01)C22C 32/00(2006.01)C22C 1/05(2006.01)
权利要求书1页 说明书8页 附图4页
(54)发明名称
一种双尺寸硬质颗粒增强的铜基复合材料及其制备方法(57)摘要
本发明公开了一种双尺寸硬质颗粒增强的铜基复合材料,其组分及质量分数如下:陶瓷颗粒1%~5%,高碳铬铁颗粒6%~12%,天然鳞片石墨8%~12%,余量为电解铜粉;其中,所述陶瓷颗粒为:镀铜SiC颗粒,镀铜B4C颗粒,镀铜TiC颗粒,镀铜A1203颗粒,镀铜Cr203颗粒,镀铜Si02颗粒,镀铜Si3N4颗粒,镀铜AlN颗粒中的一种或几种。本发明还提供了一种双尺寸硬质颗粒增强的铜基复合材料的制备方法。
CN 1103439 ACN 1103439 A
权 利 要 求 书
1/1页
1.一种双尺寸硬质颗粒增强的铜基复合材料,其特征在于,所述双尺寸硬质颗粒增强的铜基复合材料的组分及质量分数如下:
陶瓷颗粒1%~5%,高碳铬铁颗粒6%~12%,天然鳞片石墨8%~12%,余量为电解铜粉;
其中,所述陶瓷颗粒为:镀铜SiC颗粒,镀铜B4C颗粒,镀铜TiC颗粒,镀铜A1203颗粒,镀铜Si02颗粒,镀铜Cr203颗粒,镀铜Si3N4颗粒,镀铜AlN颗粒中的一种或几种。
2.根据权利要求1所述的双尺寸硬质颗粒增强的铜基复合材料,其特征在于,所述陶瓷颗粒的尺寸为10~30μm。
3.根据权利要求2所述的双尺寸硬质颗粒增强的铜基复合材料,其特征在于,所述陶瓷颗粒中镀铜层厚度为0.4~0.6μm。
4.根据权利要求1-3任意一项所述的双尺寸硬质颗粒增强的铜基复合材料,其特征在于,所述高碳铬铁颗粒的尺寸为100~300μm。
5.根据权利要求4所述的双尺寸硬质颗粒增强的铜基复合材料,其特征在于,所述高碳铬铁颗粒中各元素质量分数分别为:Cr61%~63%;Fe28%~30%;C5%~6%。
6.一种双尺寸硬质颗粒增强的铜基复合材料的制备方法,用于制备如权利要求1-5所述的双尺寸硬质颗粒增强的铜基复合材料,其特征在于,包括如下步骤:
步骤一、按照质量分数称取陶瓷颗粒、高碳铬铁颗粒、天然鳞片石墨和电解铜粉,放入混料罐中;并且向所述混料罐中加入混料剂;
步骤二、将所述混料罐放入混料机中进行混料后,得到复合粉末;步骤三、将所述复合粉末装入模具中,冷压成型后,得到坯料;步骤四、将所述坯料装入模具中,在真空热压炉中进行烧结后,得到热压件;步骤五、将所述热压件从所述真空热压炉中取出,去除模具,得到所述的双尺寸硬质颗粒增强的铜基复合材料。
7.根据权利要求6所述的双尺寸硬质颗粒增强的铜基复合材料的制备方法,其特征在于,在所述步骤一中,所述陶瓷颗粒、所述高碳铬铁颗粒、所述天然鳞片石墨和所述电解铜粉的总质量与所述混料剂的质量之比为1:0.002~0.005。
8.根据权利要求7所述的双尺寸硬质颗粒增强的铜基复合材料的制备方法,其特征在于,在所述步骤二中,混料机转动速度为350~450r/min,混料时间为3~4h。
9.根据权利要求8所述的双尺寸硬质颗粒增强的铜基复合材料的制备方法,其特征在于,在所述步骤三中,冷压压力为450~550MPa,保压时间为30~60s。
10.根据权利要求9所述的双尺寸硬质颗粒增强的铜基复合材料的制备方法,其特征在于,在所述步骤四中,真空热压炉中进行烧结的方法为:
在真空热压炉内真空度为10-2Pa下,升温至350~450℃,保温1.5~2h;继续升温至880~920℃,保温并加压至2~3MPa,保温1~1.5h。
2
CN 1103439 A
说 明 书
1/8页
一种双尺寸硬质颗粒增强的铜基复合材料及其制备方法
技术领域
[0001]本发明属于铜基复合材料技术领域,特别涉及一种双尺寸硬质颗粒增强的铜基复合材料及其制备方法。
背景技术[0002]铜基复合材料具有良好的加工性和导热性而被应用于飞机、汽车、高速列车等交通工具的制动材料。在铜基复合材料中经常加入石墨作为固体润滑剂,通过在摩擦表面形成富石墨的传递层来稳定摩擦系数,降低滑动过程中的磨损率。然而,软的石墨的加入导致必将导致铜基复合材料力学性能的下降,同时大大降低材料的摩擦系数。[0003]制动材料不仅要求良好的润滑性能,而且要求优良的机械性能和较高的摩擦系数,因此铜基复合材料中常加入硬质颗粒作为强化相来提高其综合性能。研究表明,硬质颗粒的尺寸对铜基复合材料的摩擦学性能有很大的影响。小尺寸硬质颗粒(<30μm)主要作用为提高材料摩擦系数,切削摩擦表面的粘结物,防止材料表面粘着磨损;大尺寸硬质颗粒(>50μm)主要起到骨架作用,防止基体变形,稳定摩擦系数,保证对磨面平整和增加材料耐磨性。而传统的铜基复合材料中通常只加入一种尺寸的硬质颗粒,这样很难满足制动材料对摩擦磨损性能的要求。
[0004]硬质颗粒需要具备一定的硬度和强度,高的熔点,烧结温度内无多晶转变,与基体润湿性好,不与其它组元或烧结气体发生化学反应等优点。目前,铜基复合材料中常见的硬质颗粒主要为碳化物(SiC,B4C,TiC等),氧化物(A1203,Si02等)以及氮化物(Si3N4,AlN)等。然而,硬质颗粒与铜的界面润湿性较差,导致它们之间的界面较弱。对于小尺寸硬质颗粒,表面镀铜可以有效地提高硬质颗粒与铜的界面结合强度。然而,当硬质颗粒尺寸较大时,表面镀铜并不能解决这一难题。高碳铬铁颗粒具有硬度高、耐磨性好、与金属具有良好的化学相容性等特点,已经被用来代替传统的大硬质颗粒用于增强铁基和铝基复合材料,而在铜基复合材料中很少被使用。
发明内容
[0005]本发明的目的之一是提供一种双尺寸硬质颗粒增强的铜基复合材料,其通过小尺寸陶瓷颗粒与大尺寸高碳铬铁颗粒共同发挥增强作用,能够显著提高铜基复合材料的力学及耐摩擦磨损性能。
[0006]本发明的目的之二是提供一种双尺寸硬质颗粒增强的铜基复合材料的制备方法,其工艺简单,易于生产,并且能够解决硬质颗粒与铜界面结合差的问题。[0007]本发明提供的技术方案为:
[0008]一种双尺寸硬质颗粒增强的铜基复合材料,所述双尺寸硬质颗粒增强的铜基复合材料的组分及质量分数如下:[0009]陶瓷颗粒1%~5%,高碳铬铁颗粒6%~12%,天然鳞片石墨8%~12%,余量为电解铜粉;
3
CN 1103439 A[0010]
说 明 书
2/8页
其中,所述陶瓷颗粒为:镀铜SiC颗粒,镀铜B4C颗粒,镀铜TiC颗粒,镀铜A1203颗粒,
镀铜Si02颗粒,镀铜Cr203颗粒,镀铜Si3N4颗粒,镀铜AlN颗粒中的一种或几种。[0011]优选的是,所述陶瓷颗粒的尺寸为10~30μm。[0012]优选的是,所述陶瓷颗粒中镀铜层厚度为0.4~0.6μm。[0013]优选的是,所述高碳铬铁颗粒的尺寸为100~300μm。[0014]优选的是,所述高碳铬铁颗粒中各元素质量分数分别为:Cr61%~63%;Fe28%~30%;C5%~6%。
[0015]一种双尺寸硬质颗粒增强的铜基复合材料的制备方法,用于制备所述的双尺寸硬质颗粒增强的铜基复合材料,包括如下步骤:[0016]步骤一、按照质量分数称取陶瓷颗粒、高碳铬铁颗粒、天然鳞片石墨和电解铜粉,放入混料罐中;并且向所述混料罐中加入混料剂;[0017]步骤二、将所述混料罐放入混料机中进行混料后,得到复合粉末;[0018]步骤三、将所述复合粉末装入模具中,冷压成型后,得到坯料;[0019]步骤四、将所述坯料装入模具中,在真空热压炉中进行烧结后,得到热压件;[0020]步骤五、将所述热压件从所述真空热压炉中取出,去除模具,得到所述的双尺寸硬质颗粒增强的铜基复合材料。[0021]优选的是,在所述步骤一中,所述陶瓷颗粒、所述高碳铬铁颗粒、所述天然鳞片石墨和所述电解铜粉的总质量与所述混料剂的质量之比为1:0.002~0.005。[0022]优选的是,在所述步骤二中,混料机转动速度为350~450r/min,混料时间为3~4h。
[0023]优选的是,在所述步骤三中,冷压压力为450~550MPa,保压时间为30~60s。[0024]优选的是,在所述步骤四中,真空热压炉中进行烧结的方法为:[0025]在真空热压炉内真空度为10-2Pa下,升温至350~450℃,保温1.5~2h;继续升温至880~920℃,保温并加压至2~3MPa,保温1~1.5h。本发明的有益效果是:[0026]本发明提供的双尺寸硬质颗粒增强的铜基复合材料,充分发挥了小尺寸硬质颗粒提高材料摩擦系数,切削摩擦表面的粘结物,防止材料表面粘着磨损的作用,以及大尺寸硬质颗粒的防止基体变形,稳定摩擦系数,保证对磨面平整和增加材料耐磨性的作用;相较于传统的单一尺寸硬质颗粒,通过小尺寸硬质颗粒与大尺寸颗粒共同发挥增强作用,显著提高了铜基复合材料的力学及耐摩擦磨损性能。
[0027]本发明提供的双尺寸硬质颗粒增强的铜基复合材料的制备方法,工艺简单,易于生产;制备过程中使用的小硬质颗粒是经过表面镀铜处理的陶瓷颗粒,所使用的大尺寸颗粒为高碳铬铁颗粒,有效地改善了传统的硬质颗粒与铜界面润湿性差的问题;在要求高摩擦稳定性,高耐磨性的摩擦材料领域具有广阔的应用前景。附图说明
[0028]图1a为实施例1真空热压烧结后复合材料的金相照片。
[0029]图1b为实施例1所制备复合材料中镀铜SiO2颗粒与铜的界面结合图。[0030]图1c为实施例1所制备复合材料中高碳铬铁颗粒与铜的界面结合图。[0031]图2为实施例2真空热压烧结后复合材料的金相照片。
4
CN 1103439 A[0032][0033][0034][0035][0036][0037][0038]
说 明 书
3/8页
图3a为实施例3真空热压烧结后复合材料的金相照片。
图3b为实施例3所制备复合材料中镀铜Al2O3颗粒与铜的界面结合图。图4为实施例4真空热压烧结后复合材料的金相照片。图5a为对比例1真空热压烧结后复合材料的金相照片。
图5b为对比例1所制备复合材料中未镀铜SiO2颗粒与铜的界面结合图。图6为对比例2真空热压烧结后复合材料的金相照片。图7为对比例3真空热压烧结后复合材料的金相照片。
具体实施方式
[0039]下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。[0040]如图1所示,本发明提供了一种双尺寸硬质颗粒增强的铜基复合材料,其组分及质量分数如下:
[0041]小尺寸陶瓷颗粒1~5%、大尺寸高碳铬铁颗粒6~12%、天然鳞片石墨8%~12%、余量为电解铜粉。[0042]其中,所述的小尺寸硬质颗粒为镀铜SiC颗粒,镀铜B4C颗粒,镀铜TiC颗粒,镀铜A1203颗粒,镀铜Si02颗粒,镀铜Cr203颗粒,镀铜Si3N4颗粒,镀铜AlN颗粒中的一种或两种以上。
[0043]所述的小尺寸硬质颗粒尺寸为10~30μm,高碳铬铁颗粒尺寸为100~300μm,天然鳞片石墨尺寸为100~300μm,电解铜粉尺寸为1~35μm。
[0044]所述的镀铜小尺寸硬质颗粒中镀铜层厚度为0.4~0.6μm。[0045]所述的高碳铬铁颗粒中各元素重量百分比为:Cr,61%~63%;Fe,28%~30%;C,5%~6%;其它。
[0046]本发明的还提供了一种双尺寸硬质颗粒增强的铜基复合材料的制备方法包括如下步骤:[0047](1)混料:按照质量分数称取小尺寸硬质颗粒,高碳铬铁颗粒,天然鳞片石墨和电解铜粉作为混合原料粉末放入混料罐中,滴入混料剂。其中,所述混合原料粉末与混料剂的重量比为1:0.002~0.005。将混料罐装入三维摆动混料机上混料3~4h;其中,混料机转动速度为350~450r/min;混料完成后得到复合粉末。[0048](2)冷压成型:将所述复合粉末装入钢模中,在液压机下冷压成型。其中,冷压压力为450~550MPa,保压时间为30~60s;冷压成型后得到坯料。[0049](3)热压烧结:将冷压成型后的坯料装入石墨模具中,在真空热压炉中进行烧结。在炉内真空度为10-2Pa下,炉内升温速率为15~25℃/min,升温至350~450℃保温1.5~2h,使混料剂从坯料中全部挥发。继续升温至880~920℃保温并加压;其中,压力为2~3MPa,保温时间为1.5~2h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到所述的双尺寸硬质颗粒增强的铜基复合材料。[0050]实施例1[0051](1)取3g镀铜Si02颗粒(尺寸20μm),8g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),79g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料
5
CN 1103439 A
说 明 书
4/8页
罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[0052]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0053]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中,压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图1a所示。图1a中点状相为镀铜Si02颗粒,灰色相为高碳铬铁颗粒,两种颗粒都均匀分布于基体之中,说明本发明混料工艺及制备工艺合理。镀铜SiO2颗粒与铜的界面结合如图1b所示,高碳铬铁颗粒与铜的界面结合如图1c所示。由图1b和图1c可以看出镀铜SiO2颗粒和高碳铬铁颗粒与铜基体界面结合良好,并无明显孔隙存在。[0054]实施例2[0055](1)取1g镀铜Si02颗粒(尺寸30μm),6g高碳铬铁颗粒(尺寸100~300μm),8g天然鳞片石墨(尺寸200μm),85g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料3h,其中,混料机转动速度为450r/min,得到复合粉末。
[0056]
(2)将复合粉末装入内径为
(3)将冷压成型后的坯料装入内径为
的钢模中,在液压机下冷压成型。其中,冷压
的石墨模具中,在真空热压炉中进
压力为450MPa,保压时间为1min;冷压成型后得到坯料。
[0057]
行烧结。在炉内真空度为10-2Pa下,炉内升温速率为25℃/min,升温至450℃保温2h,使混料剂从坯料中全部挥发。继续升温至920℃保温并加压,其中压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图2所示。图2中点状相为镀铜Si02颗粒,灰色相为高碳铬铁颗粒,两种颗粒都均匀分布于基体之中,说明本发明混料工艺及制备工艺合理。[0058]实施例3[0059](1)取3g镀铜Al2O3颗粒(尺寸30μm),12g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),75g电解铜粉(尺寸25μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中,混料机转动速度为400r/min,得到复合粉末。
[0060]
(2)将复合粉末装入内径为
(3)将冷压成型后的坯料装入内径为
的钢模中,在液压机下冷压成型。其中,冷压
的石墨模具中,在真空热压炉中进
压力为550MPa,保压时间为30s;冷压成型后得到坯料。
[0061]
行烧结。在炉内真空度为10-2Pa下,炉内升温速率为15℃/min,升温至350℃保温2h,使混料剂从坯料中全部挥发。继续升温至880℃保温并加压,其中,压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图3a所示。图3a中点状相为镀铜Al2O3颗粒,灰色相为高碳铬铁颗粒,两种颗粒都均匀分布于基体之中,说明本发明混料工艺及制备工艺合理。镀铜Al2O3颗粒与铜的界面结合
6
CN 1103439 A
说 明 书
5/8页
如图3b所示,可以看出镀铜Al2O3颗粒与铜基体界面结合良好,并无明显孔隙存在。[0062]实施例4[0063](1)取2g镀铜Al2O3颗粒(尺寸10μm),3g镀铜Si02颗粒(尺寸10μm),12g高碳铬铁颗粒(尺寸100~300μm),12g天然鳞片石墨(尺寸300μm),70g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[00]
(2)将复合粉末装入内径为
(3)将冷压成型后的坯料装入内径为
的钢模中,在液压机下冷压成型。其中,冷压
的石墨模具中,在真空热压炉中进
压力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0065]
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中,压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图4所示。图4中点状相为镀铜Al2O3颗粒和镀铜Si02颗粒,灰色相为高碳铬铁颗粒,三种颗粒都均匀分布于基体之中,说明本发明混料工艺及制备工艺合理。[0066]对比例1[0067](1)取2g未镀铜Si02颗粒(尺寸20μm),8g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),80g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末。取2g未镀铜Si02颗粒是因为实施例1中取3g镀铜Si02颗粒,而2g的Si02颗粒镀铜后质量为3g。
[0068]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0069]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图5a所示。图5a中点状相为镀铜Si02颗粒,灰色相为高碳铬铁颗粒,两种颗粒都均匀分布于基体之中。镀铜SiO2颗粒与铜的界面结合如图5b所示,可以看到未镀铜SiO2颗粒与铜基体之间存在较大的孔隙。[0070]对比例2[0071](1)取3g镀铜Si02颗粒(尺寸20μm),10g天然鳞片石墨(尺寸300μm),87g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[0072]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0073]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从
7
CN 1103439 A
说 明 书
6/8页
坯料中全部挥发。继续升温至900℃保温并加压,其中压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到小尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图6所示。图6中点状相为镀铜Si02颗粒,均匀分布于基体之中。[0074]对比例3[0075](1)取8g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),82g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[0076]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0077]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到大尺寸硬质颗粒增强的铜基复合材料。真空热压烧结后复合材料的金相照片如图7所示。图7中灰色相为高碳铬铁颗粒,均匀分布于基体之中。[0078]对比例4[0079](1)取6g镀铜Si02颗粒(尺寸20μm),8g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),76g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[0080]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0081]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中,压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。[0082]对比例5[0083](1)取3g镀铜Si02颗粒(尺寸20μm),13g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),74g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[0084]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[0085]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中,压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。
8
CN 1103439 A[0086]
说 明 书
7/8页
对比例6
[0087](1)取3g镀铜Si02颗粒(尺寸20μm),5g高碳铬铁颗粒(尺寸100~300μm),10g天然鳞片石墨(尺寸300μm),82g电解铜粉(尺寸35μm)放入混料罐中,滴入0.2ml混料剂,将混料罐装入三维摆动混料机上混料4h,其中混料机转动速度为400r/min,得到复合粉末;
[0088]
(2)将复合粉末装入内径为的钢模中,在液压机下冷压成型。其中冷压压
的石墨模具中,在真空热压炉中进
力为500MPa,保压时间为1min。冷压成型后得到坯料。
[00]
(3)将冷压成型后的坯料装入内径为
行烧结。炉内真空度为10-2Pa,炉内升温速率为20℃/min,升温至400℃保温2h,使混料剂从坯料中全部挥发。继续升温至900℃保温并加压,其中,压力为2-3MPa,保温时间为1h。保温时间结束后,关掉电源,卸载压力,待炉内温度降至100℃以下,将热压件从真空热压炉中取出,去模具,得到双尺寸硬质颗粒增强的铜基复合材料。
[0090]对实施例1-4以及对比例1-6制备的铜基复合材料的相对密度,布氏硬度,摩擦系数及磨损率进行了测试,其结果如表1所示。由表1可以看出,相较于对比例1-6所制备的铜基复合材料,实施例1-4所制备的小尺寸陶瓷颗粒和大尺寸高碳铬铁颗粒共同增强的铜基复合材料具有较高布氏硬度和摩擦系数,同时具有较低的磨损率。对比实施例1与对比例1性能发现,陶瓷颗粒表面镀铜可以有效的提高材料的综合性能,这是因为表面镀铜可以改善陶瓷颗粒与铜之间的界面结合(对比图1b与图5b)。对比实施例1与对比例2和对比例3性能发现,双尺寸硬质颗粒较单尺寸颗粒增强的铜基复合材料具有更好的综合性能。对比实施例1与对比例4、对比例5和对比例6性能发现,小尺寸陶瓷颗粒质量范围应在1~5%,大尺寸高碳颗粒质量范围应在6~12%,铜基复合材料具有更好的综合性能。同时,由表可以看出,实施例所制备的小尺寸陶瓷颗粒和大尺寸铬铁碳碳颗粒共同增强的铜基复合材料可以显著的降低材料的磨损率,尤其是实施例1中磨损率仅仅为21mg/Km,相较于对比例1-6中的铜基复合材料,复合材料的耐磨性提高了2倍以上。
[0091]表1各实施例和对比例中制备的铜基复合材料的性能表
[0092]
布氏硬度(HBW)平均摩擦系数磨损率(mg/Km)实施例143.70.38321实施例243.10.36331实施例343.30.37936实施例442.80.38534对比例141.40.34743对比例242.60.35147对比例340.60.31762对比例441.60.37149对比例542.40.34252对比例2.30.35842[0093]尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限
9
CN 1103439 A
说 明 书
8/8页
于特定的细节和这里示出与描述的图例。
10
CN 1103439 A
说 明 书 附 图
1/4页
图1a
图1b
图1c
11
CN 1103439 A
说 明 书 附 图
2/4页
图2
图3a
图3b
12
CN 1103439 A
说 明 书 附 图
3/4页
图4
图5a
图5b
13
CN 1103439 A
说 明 书 附 图
4/4页
图6
图7
14
因篇幅问题不能全部显示,请点此查看更多更全内容