stopped-pionneutrinosource
KateScholberg1
1
DepartmentofPhysics,DukeUniversity,Durham,NC27708USA
(Dated:February7,2008)
Ratesofcoherentneutrino-nucleuselasticscatteringatahigh-intensitystopped-pionneutrinosourceinvariousdetectormaterials(relevantfornovellow-thresholddetectors)arecalculated.Sen-sitivityofacoherentneutrino-nucleuselasticscatteringexperimenttonewphysicsisalsoexplored.
PACSnumbers:13.15.+g,13.40.Em,23.40.Bw
I.INTRODUCTION
Coherentelasticneutralcurrent(NC)neutrino-nucleusscattering[1,2]hasneverbeenobserved.Inthisprocess,aneutrinoofanyflavorscattersoffanucleusatlowmomentumtransferQsuchthatthenucleonwavefunctionamplitudesareinphaseandaddcoherently.Thecrosssectionforaspin-zeronu-cleus,neglectingradiativecorrections,isgivenby[3],dσ
Q2w
2π
k2
,(1)
wherekistheincidentneutrinoenergy,Eisthe
nuclearrecoilenergy,Misthenuclearmass,Fisthegroundstateelasticformfactor,Qwistheweaknuclearcharge,andGFistheFermiconstant.The
conditionforcoherencerequiresthatQ<∼
1
xulF0.0350.03νµ (delayed)νe (delayed)0.025νµ (prompt)0.020.0150.010.005001020304050Neutrino energy (MeV)FIG.1:Shapeofneutrinospectrafromastopped-pionsource,forthedifferentproducedflavors.
Hereprospectsformeasuringcoherentelasticneutrino-nucleusscatteringwillbeevaluatedusingparametersrelevantfortheSNS;howevertheresultsshouldbegenerallyapplicabletoexperimentsatanyhigh-intensitystopped-pionνsource.
II.
EXPECTEDEVENTRATES
Theexpectedrateofinteractionsdifferentialinrecoilenergyisgivenby
dN
dE(k),
(2)
whereNtisthenumberoftargetsandφ(k)istheincidentneutrinoflux.Spectraforνµ,ν¯µandνe
fora2stoppedπ+/µ+
source,assuming∼107νs−1cm−perflavorat20mfromthesourceareassumed.Cross40
sectionsandformfactorsfrom[3,26]for20Ne,Ar,76Ge,and132Xeareused.Figs.2through5showtheresults.Theratesarequitepromising:foraton-scaledetectorwithafewto10keVthreshold,104−105signaleventsperyearareexpected.Evenforkilogram-scaledetectors,eventratesmaybeinthetensperyear.
Fig.6plotsintegratedyieldoverthresholdforsev-eralelementsforcomparison.Onecanseethatthehigherthenuclearmass,thehighertheoveralleventrateatlowthreshold(scalingapproximatelyasthesquareofthenumberofneutrons),butthesmallerthetypicalrecoilenergies(Emax=2k2/M).
Intheabsenceofaspecificdetectormodel,per-fectdetectionefficiencyandzerobackgroundareassumed,whichisnotrealistic.Detectioneffi-cienciesformanylow-thresholddetectortypes(seeSec.I)canbereasonablyhigh,butcandependonbackgroundlevels.Backgroundswillincludebeam-relatedneutrons,cosmogenics,radioactivityandin-strumentalbackground,aswellasotherCCandNC
2
3SNS spectrum, Nen×10ot 8reprompt (νp7µ) ry 6rdelayed (νµ+ νe)ep 5hse4rht3 rev2o st1nevE50100150200Threshold (keV)250not60 reνµ (prompt)p 50rνye (delayed) re40νµ (delayed)p Vek30 rep20 stne10vE50100150200Recoil energy (keV)250FIG.2:Bottompanel:DifferentialyieldattheSNSin1tonof20Ne(solid:νµ,dotted:νe,dashed:ν¯µ)peryearperkeV,asafunctionofrecoilenergy.Toppanel:Numberofinteractionsoverrecoilenergythresholdin1tonof20Nefor1yrofrunningattheSNS(solid:νµ,dashed:sumofνeandν¯µ),asafunctionofrecoilenergythreshold.
×103SNS spectrum, Arnot r18e16prompt (νpµ) ry 14rdelayed (νµ+ νe)ep12 hs10erh8t re6vo4 stn2evE20406080100Threshold (keV)120140no300t reνp250νµ (prompt) ry re200νe (delayed)µ (delayed)p Ve150k rep100 stne50vE20406080100Recoil energy (keV)120140FIG.3:AsinFig.2for
40
Ar.
neutrinoreactions;thesewillneedtobeevaluatedforaspecificdetector’srejectioncapabilitiesandlo-cation.Backgroundsarenotobviouslyoverwhelm-ing,especiallygiventhatthepulsedstructureofthebeamsuchasthatattheSNSleadstoapowerfulre-jectionfactor(∼4×10−4)againststeady-stateback-grounds.Itisnotreallyclearatthispointwhetherbeam-relatedbackgroundswillbeworseforpromptordelayedneutrinos;itwilldependonshieldingand
n×103SNS spectrum, Geot 35reprompt (νpµ) 30ry rdelayed (νµ+ νe)e25p h20serh15t re10vo s5tnevE102030405060Threshold (keV)70n×103ot1.2 reνp 1rνµ (prompt)ye (delayed) re0.8νµ (delayed)p Vek0.6 rep0.4 stne0.2vE1020304050Recoil energy (keV)6070FIG.4:AsinFig.2for
76
Ge.
×103SNS spectrum, Xeno60t reprompt (νpµ) 50ry rdelayed (νµ+ νe)e40p hse30rht r20evo s10tnevE5101520253035Threshold (keV)4045n×103o4t re3.5νµ (prompt)p rνy3e (delayed) rep2.5νµ (delayed) Ve2k re1.5p st1nev0.5E51015202530Recoil energy (keV)354045FIG.5:AsinFig.2for
132
Xe.
detectorlocation.Thereforethecontributionsfrompromptanddelayedfluxesaregivenseparately.
III.PHYSICSPOTENTIAL
Theneutrino-nucleuscoherentelasticscatteringcrosssectioniscleanlypredictedbytheStandardModel(SM);formfactorscanbeknowntobetterthan5%,andradiativecorrectionsareknownatthepercentlevel[27].Anymeasureddeviationsfrompredictionwouldbeinteresting[28].Inthecon-textoftheSM,theweakmixingangleisrelatedtotheabsolutescatteringrate.Onecanalsoconstrain
3
n×103ot 50reDelayed (νµ+ νe), Nep ry40Delayed (ν µ+ νe), Arrep Delayed (νh30µ+ νe), GeserDelayed (νµ+ νe), Xeht20 revo 10stnevE1102Threshold (keV) 10n×103o22t re20Prompt (νµ), Nep 18ry16Prompt (ν µ), Arrep14 Prompt (ν12µ), Gehser10Prompt (νµ), Xeht 8rev6o 4stn2evE1102Threshold (keV) 10FIG.6:Thenumberofinteractionsovertherecoilenergythresholdforvariousdetectormaterials(bottompanel:promptνµ,toppanel:sumofdelayedνeandν¯µ).
non-standardinteractions(NSI)ofneutrinosandnu-cleons.Also,non-zeroneutrinomagneticmomentwillmodifythecrosssectionatlowenergies.Therearefurtherreasonstomeasurecoherentneutrino-nucleusscattering:neutrino-nucleusscatteringpro-cessesareimportantinsupernovaphysics[1],aswellasbeingusefulthemselvesforsupernovaneutrinodetection[3].Becausetheyareflavorblind,NCprocessesallowmeasurementoftotalneutrinoflux,whichcanbecomparedtoindependentlymeasuredCCinteractions.Thereforeonecanobtainlimitsonneutrinooscillation,andinparticularonoscilla-tionstosterileneutrinos[29].Finally,ithasevenbeenproposedtoexploitthelargecrosssectionsofneutrino-nucleusscatteringforpracticalneutrinode-tectors,e.g.reactormonitoring[5,6].
Thissectionwilldiscussthevariouswaysofprob-ingnewphysicswithacoherentelasticscatteringex-periment.Atthisstage,theexperimentalsystematicuncertaintyontheabsoluterateisnotknown.Itwilldependonthespecificdetectortypeandconfigura-tion,backgrounds,andsourceuncertainties.How-everatotalsystematicuncertaintyof∼10%(includ-ingnuclear,beamanddetector-relateduncertain-ties),whileperhapsoptimistic,maywellbeachiev-able.Systematicuncertaintieswilllikelydominateatthefewtensofakilogramscaleorgreater.
A.
WeakMixingAngle
TheSMpredictsacoherentelasticscatteringrateproportionaltoQ2w,theweakchargegivenbyQw=N−(1−4sin2
θW)Z,whereZisthenumberofpro-tons,NisthenumberofneutronsandθWistheweakmixingangle.Thereforetheweakmixinganglecanbeextractedfromthemeasuredabsolutecrosssection,atatypicalQvalueof0.04GeV/c2.Ade-viationfromtheSMpredictioncouldindicatenewphysics.
Iftheabsolutecrosssectioncanbemeasuredto10%,therewillbeanuncertaintyonsin2θWof∼5%.Thisisnotcompetitivewiththecurrentbestmeasurementsfromatomicparityviolation[30,31],SLACE158[32]andNuTeV[33],whichhavebetterthanpercent-leveluncertainties.Onewouldneedtosignificantlyimprovethesystematicuncertaintyontheabsoluterate(perhapsbynormalizingwithawell-knownrate)forcoherentelasticνAscatteringinordertomakeausefulmeasurementoftheweakmixingangle.Morepromisingwouldbeasearchfornon-standardinteractionsofneutrinoswithnuclei,asdescribedinthefollowingsubsection.
B.Non-StandardInteractionsofNeutrinos
Existingprecisionmeasurementsoftheweakmix-ingangleatlowQdonotconstrainnewphysics
whichisspecifictoneutrino-nucleoninteractions.Hereamodel-independentparameterizationofnon-standardcontributionstothecrosssectionisused,followingRefs.[34,35].Inthisdescription,oneassumesaneffectiveLagrangianforinteractionofaneutrinowithahadron:
LNSIνH=−GF
2
[¯ναγµ(1−γ5)νβ]×(3)
q=u,d
α,β=e,µ,τ
(εqLαβ[¯
qγµ(1−γ5)q]+
εqRαβ[¯
qγµ(1+γ5)q]).
Theεparametersdescribeeither“non-universal”(α=β)orflavor-changing(α=β)interactions.AsinRef.[34],nucleiwithtotalspinzero,andforwhichsumofprotonspinsandsumofneutronspinsisalsozero,areconsidered;inthiscasesensitivitytovectorcouplings,εqVqLqR
wehave
crosssectionforcoherentNCαβ=εelasticαβ+εscatteringαβ.Theofneutrinosofflavorαoffsuchaspin-zeronucleusisgivenby
4
dσ
π
F2(2ME)
1−
ME
−2sin2θW),
gnV=−1
2
−1<εuLee<0.3
CHARMνeN,ν¯eNscattering−0.4<εuRee<0.7−0.3<εdLee<0.3
CHARMνeN,ν¯eNscattering−0.6<εdR
ee<0.5|εuLµµ|<0.003NuTeVνN,ν¯Nscattering−0.008<εuRµµ<0.003
|εdL
µµ|<0.003NuTeVνN,ν¯Nscattering−0.008<εdRµµ<0.015
|εuP
eµ|<7.7×10−4
µ→econversiononnuclei
|εdPeµ|<7.7×10
−4
µ→econversiononnuclei|εuPeτ|<0.5CHARMνeN,ν¯eNscattering|εdPeτ|<0.5CHARMνeN,ν¯eNscattering|εuP
µτ|<0.05NuTeVνN,ν¯Nscattering|εdPµτ|<0.05
NuTeVνN,ν¯Nscattering
Fromthistable,onecanseethatofthesepa-rameters,εeeandεeτarequitepoorlyconstrained:valuesoforderunityareallowed.|εµβ|couplingsare,however,constrainedtobetterthan0.05.Giventhissituation,thefocushereisonεeeandεeτcou-plings[38].Thesewouldbeaccessibleusingtheelec-tronflavorcomponentofthesource.Thatnooscil-lationstakeplace(i.e.thatthestandardthree-flavormodelofneutrinomixingholds,andthatthebase-lineistooshortforsignificantflavortransition)isalsoassumed.
ThesignatureofNSIisadeviationfromtheex-pectedcrosssection.Thefollowingshowafewex-
5
amplesoftwo-dimensionalslicesofregionsinεαβparameterspacethatwouldbeallowedifonemea-suredexactlytheSMexpectation.
Fig.7shows90%C.L.allowedregionsonewould
dV
drawforεuVee,εee,iftheratepredictedbytheSMweremeasuredforthedelayedflux(whichcontainsνe),assumingthattheεµβparametersarenegligible,andforεqVeτ=0,for100kg-yrofrunningofaneondetectorat20mfromthesource.A10keVthresh-oldisassumed.Thiscalculationconsidersonlythetotaldelayed(νe+ν¯µ)fluxrate[39].Theregionscorrespondingtoassumptionsof5%and10%sys-tematicerrorinadditiontostatisticalerror,andforstatisticalerroraloneareshown[40].Asbe-fore,aperfectlyefficient,background-freedetectorisassumed.
NotethatinEq.4,eveninthepresenceofnon-universalNSI,onecanobtainratesidenticaltotheSMpredictioninthecasethat
pdVdVnuVZ(gV+2εuVee+εee)+N(gV+εee+2εee)(5)
pn
=±(ZgV+NgV),
sofor
εuVee=−
(A+N)
(A+Z)
εdVee
−
pn2(ZgV+NgV)
FIG.9:Allowedregionat90%C.L.forεdVeeandεdV
eτ,for
100kg-yrof20
NeattheSNS.Theshadedregionbetweentheouterandinnerellipsescorrespondstoanassumedsystematicuncertaintyof10%inadditiontostatisticaluncertainty;thenextlargestregioncorrespondstoanassumedsystematicuncertaintyof5%,andtheinnerregioncorrespondstostatisticaluncertaintyonly.
FIG.10:Allowedregionswithsameassumptionsas
Fig.9,13210%systematicuncertainty,for20Ne(shadedre-gion),Xe(regionbetweenpalelines)andbothcom-bined(regionbetweenblacklines).
andatmosphericneutrinos[36].
Itisworthnotingthatacoherentneutrino-nucleuselasticscatteringexperimentwillprovidesignifi-cantconstraintsonstill-allowedNSIparametersthatmodifysolarneutrinosurvivalprobabilities[37].Asacaseinpoint,considerspecificNSIparameters
6
FIG.εuV11:ee=εuVAllowedregionat90%C.L.fordV
eτ=0,for100kg-yreachof20εdVeeandNeand132εeτ,XeattheSNSisshowninblack.Theshadedregioncorre-spondstoasliceofallowedNSIforεττ=0,andεeVee=εeV
parametersfromRef.[36]
eτ=0;theparabolicregionsinsidethedarkandlightlinescorrespondtoslicesofal-lowedparameterspaceforsomespecificvaluesofεeVeeandεeVeτ
.thatyieldthe“LMA-0”solutionofRef.[37]:εuVεdV11=−0.065,andεuV12=εdV
11=12=−0.15,whereε11=εee−εττsin2θ23,andε12=−2εeτsinθ23,andθ23istheatmosphericmixingangle,knowntobe∼π/4.Followingtheapproachinthisref-erence,εuVαβ=εdV
αβisassumed.
Fixingε11andε12definedinthiswaywillyielddifferentneutrino-nucleusscatteringconstraintsfordifferentassump-tionsofεττ.Fig.12showsthevalueofaχ2de-fineduVasχ2=(NNSI−NSM)2/σ2,asafunctionof
εττ=εdV
ττ;NNSIisthenumberofsignaleventsforthegivenNSIparameters,20andNSMistheSMex-pectation,for100kg-yrofNeat10keVthreshold;σ2includesbothstatisticaluncertaintyandanas-sumed10%systematicuncertainty.Superimposedonthisplotasashadedregionistherestriction
onε(τu,dτ)V
(givenassumptionsabove,andεeVαβ=0)
from
beamand1+εee+εττ−
atmosphericneutrinooscillations,2χ8765432100.10.20.30.40.5∈(u,d)VττFIG.12:χ2asafunctionofετ(u,dτ
)V
for100kg-yrsof20
Ne,assumingNSIparametersε(u,d)V=−0.065andε(u,d)V
11
=−0.15.Theshadedregionrepresentsallowedε12
ττparametersfromRef.[36],frombeamandatmo-sphericneutrinooscillationconstraints.
TheconclusionoftheseNSIstudiesisthatacoherentelasticneutrino-nucleusscatteringexperi-mentatastopped-pionsourcewouldhavesignificant
sensitivitytocurrently-allowedNSIεqVrameters.
eeandεqV
eτpa-C.NeutrinoMagneticMoment
TheSMpredictsaneutrinomagneticmomentofµν≤10−19µB(mν/1eV),inunitsofBohrmagne-tons.Thisisverysmall,butextensionsoftheSMcommonlypredictlargerones.Themoststringentlimitsareastrophysical:forinstance,basedonlackofobservedenergylossfromelectromagneticcou-plingsinredgiantevolutiononecansetalimitµν≤10−12µB[43].Thebestdirectexperimen-tallimitsresultfromlackofdistortionofneutrino-electronelasticscatteringatlowenergy,andareintherangeofµν(νe)≤1−2×10−10µB[44,45,46].Formuonneutrinoscattering,thebestlimitislessstringent:µν(νµ)≤6.8×10−10µB[47].
Asignatureofnon-zeroneutrinomagneticmo-mentcanbeobservedviadistortionoftherecoilspectrumofcoherentlyscatterednuclei.Themag-neticscatteringcrosssectionisgiveninRef.[48]foraspin-zeronucleus:
dσ
1−E/k
m2e
4k2
.(6)
7
Fig.13shows20thedifferentialcrosssectionscal-culatedforNe,for30MeVneutrinoenergy,asafunctionofnuclearrecoilenergy.Themagneticscat-teringcrosssectioniscalculatedforneutrinomag-neticmomentjustbelowthecurrentbestexperi-mentallimits(10−10µBforνeand6×10−10µBforνµ).
ν-nucleus scattering at 30 MeV, Ne)210-37mc1 -Ve10-38SMM( noitc10-39es-10-sµν=6 × 10so10-40rC10-41µν=1 × 10-1010-420.0020.0040.0060.0080.010.0120.0140.0160.0180.02MeVFIG.13:Solidline:SMcoherentneutrino-nucleusdiffer-entialcrosssection,asafunctionofnuclearrecoilenergy
E,forneutrinoenergyk=30MeVandfora20Netar-get.Dashedline:differentialcrosssectionforneutrino-nucleusscatteringduetoaneutrinomagneticmomentofµν=10−10µB.Dottedline:differentialcrosssectionforneutrino-nucleusscatteringduetoaneutrinomagneticmomentofµν=6×10−10µB.
Fig.14showstheyieldineventsperkeVofrecoil
energy,pertonperyearinaneondetectorat20mfromtheSNStarget,withandwithoutneutrinomagneticmomentcontribution,forpromptandde-layedfluxes.Thedashedlineassumesνµ=10−10µBforbothνeandν¯µ.Thedottedlineassumesνµ=10−10
µBforνeandνµ=6×10−10µBforν¯µ.Thedifferenceincoherentneutrino-nucleusscat-teringyieldduetopresenceofaneutrinomagneticmomentnearthecurrentµνlimitforνeisverysmall,exceptforrecoilenergiesbelowafewkeV.Thissig-nalisthereforelikelyoutofreachforaCLEAN-typeexperimentattheSNS.However,forµνnearthecur-rentlimitforνµ,theremightbeameasurablesignalfora10keVthreshold,anditisconceivablethatonecouldimprovethelimitwithahigh-statisticsmeasurement.Nucleiwithspin,althoughnotcon-sideredhere,haveadditionalµν-dependenttermsintheircoherentneutrino-nucleusscatteringcrosssec-tions[48]andmaybepotentialtargetsforaneutrinomagneticmomentsearch[49]
8
Events per keV per yr per ton2001801601401201008060402010-410-3Prompt fluxSM-10µν=1 × 10-10µν=6 × 10µ10-210-1MeVEvents per keV per yr per ton2001801601401201008060402010-410-3Delayed fluxverypromising.Evenfewkilogram-scaleexperi-mentsmayhavemeasurablerates.Theseestimateshavebeenmadeforanexperimentwithnoback-groundandnoinefficiency;bothwillcertainlybeimportantforarealexperiment.Sensitivitieswillneedtobereevaluatedforaspecificdetectorconfig-urationforwhichbackgroundsandefficienciescanbeestimated.
Unambiguousdetectionoftheprocessisafirststep;highstatisticsmeasurementswillthenfollow.Suchanexperimenthassignificantpotentialforcon-strainingNSIparameters;magneticmomentandprecisionweakmixinganglemeasurementsarealsoconceivable,althoughposeagreaterexperimentalchallenge.
10-210-1MeVFIG.14:DifferentialyieldattheSNSinneonasafunc-tionofnuclearrecoilenergy.Thetopplotisforthepromptflux(νµonly)andthebottomplotisforthedelayedflux(sumofνeandν¯µ).Solidlines:SMexpec-tation.Dashedlines:yieldincludingmagneticmomentcontributionforµν=10−10µBforbothνeandν¯µ.Dot-tedlines:yieldincludingmagneticmomentcontributionforµν=10−10µBforνeandµν=6×10−10µBforν¯µ,νµ.
Acknowledgments
IV.CONCLUSION
Straightforwardcalculationsindicatethatoneex-pectsthousandsofcoherentneutrino-nucleusinter-actionswithrecoilenergies>10keVpertonofmaterialperyearofrunningattheSNS,whichis
TheauthorisgratefultoD.Akerib,B.Balantekin,J.Beacom,J.Collar,M.Dragowsky,Y.Efremenko,A.Friedland,H.Gao,C.Horowitz,E.Kearns,G.McLaughlin,B.Mueller,R.Raghavan,T.Schutt,C.WalterandA.Young,andespeciallyJ.Engel,C.LunardiniandD.McKinsey,forcommentsanddiscussions.C.Horowitzprovidedtheformfactorsforthecalculation.TheauthorwouldalsoliketothanktheInstituteforNuclearTheoryattheUni-versityofWashington,wherethisworkwasstarted,foritshospitality.Theauthor’sresearchactivitiesaresupportedbytheDepartmentofEnergyandtheNationalScienceFoundation.
[1]D.Z.Freedman,D.N.Schramm,andD.L.Tubbs,
Ann.Rev.Nucl.Part.Sci.27,167(1977).
[2]A.DrukierandL.Stodolsky,Phys.Rev.D30,2295
(1984).
[3]C.J.Horowitz,K.J.Coakley,andD.N.McKinsey,
Phys.Rev.D68,023005(2003),astro-ph/0302071.[4]F.BoehmandP.Vogel,PhysicsofMassiveNeu-trinos(CambridgeUniversityPress,Cambridge,1987).
[5]P.Barbeau,J.I.Collar,J.Miyamoto,and
I.Shipsey,IEEETrans.Nucl.Sci.50,1285(2003),hep-ex/0212034.
[6]C.HagmannandA.Bernstein,IEEETrans.Nucl.
Sci.51,2151(2004),nucl-ex/0411004.[7]H.T.Wong(2005),hep-ex/0511001.
[8]D.N.McKinseyandK.J.Coakley,Astropart.Phys.
22,355(2005),astro-ph/0402007.
[9]M.G.Boulay,A.Hime,andJ.Lidgard(2004),nucl-ex/0410025.
[10]M.G.BoulayandA.Hime(2004),astro-
[11][12]
[13][14][15]
ph/0411358.
E.Aprileetal.,Phys.Rev.D72,072006(2005),astro-ph/0503621.
Y.Takeuchi,inProceedingsofthe32ndInterna-tionalConferenceonHigh-EnergyPhysics(ICHEP04),Beijing,China,16-22Aug2004(WorldScien-tific,Hackensack,2004).
G.J.Alneretal.(UKDarkMatter),Astropart.Phys.23,444(2005).
D.P.Snowden-Ifft,T.Lawson,N.J.C.Spooner,andN.Villaume,Nucl.Instrum.Meth.A516,406(2004).
R.Galea(2005),http://snolab2005.snolab.ca/talks/Snolabgalea
strum.Meth.A555,184(2005),physics/0508098.[20]C.Athanassopoulosetal.(LSND),Nucl.Instrum.Meth.A388,149(1997),nucl-ex/9605002.
[21]R.L.Burman,Nucl.Instrum.Meth.A368,416(1996).
[22]I.S.K.Gardner,in6thEuropeanParticleAccelera-torConference(EPAC98),Stockholm,Sweden,22-26Jun1998(IOPPublishing,Philadelphia,1998).[23]Y.Ikeda(2003),http://www.fz-juelich.de/ess/datapool/icanspdf/Ikeda-G3-paper.pdf.
[24]F.T.AvignoneandY.V.Efremenko,J.Phys.G29,2615(2003).[25]Nu-SNSCollaboration(2005),http://www.phy.ornl.gov/nusns/proposal.pdf.
[26]C.J.HorowitzandG.Shen(2005),privatecommu-nication.
[27]C.J.Horowitz(2005),privatecommunication.[28]L.M.Krauss,Phys.Lett.B269,407(1991).
[29]
NotethatforanSNSconfiguration,moststerileos-cillationscenariosarealreadyquitewellconstrainedbyotherexperiments,especiallyassuminganullre-sultfromMini-BooNE.
[30]S.C.BennettandC.E.Wieman,Phys.Rev.Lett.82,2484(1999),hep-ex/9903022.
[31]S.Eidelmanetal.(ParticleDataGroup),Phys.Lett.B592,1(2004).
[32]P.L.Anthonyetal.(SLACE158),Phys.Rev.Lett.95,081601(2005),hep-ex/0504049.
[33]G.P.Zelleretal.(NuTeV),Phys.Rev.Lett.88,091802(2002),hep-ex/0110059.
[34]J.Barranco,O.G.Miranda,andT.I.Rashba,JHEP12,021(2005),hep-ph/0508299.[35]S.Davidson,C.Pe˜naGaray,N.Rius,andA.San-tamaria,JHEP03,011(2003),hep-ph/0302093.[36]A.FriedlandandC.Lunardini,Phys.Rev.D72,053009(2005),hep-ph/0506143.
[37]
A.Friedland,C.Lunardini,andC.Pe˜naGaray,
9
Phys.Lett.B594,347(2004),hep-ph/0402266.[38]Onemightconceivablyeventuallyconfrontthecur-rentbestεµτlimitswithanSNScoherentelasticscatteringexperiment.
[39]Inprincipleonemightdobetterwithaspectralfittoseparateνµandν¯econtributions.
[40]Notethatonemightachievesomecancellationofabsolutesource-flux-relatedsystematicuncertaintybytakingaratioofpromptanddelayedfluxes.[41]J.Dorenboschetal.(CHARM),Phys.Lett.B180,303(1986).
[42]P.S.Amanik,G.M.Fuller,andB.Grinstein,As-tropart.Phys.24,160(2005),hep-ph/0407130.[43]
G.G.Raffelt,Phys.Rept.320,319(1999).
[44]D.W.Liuetal.(Super-Kamiokande),Phys.Rev.Lett.93,021802(2004),hep-ex/0402015.
[45]Z.Daraktchievaetal.(MUNU),Phys.Lett.B615,153(2005),hep-ex/0502037.
[46]H.T.Wong,Nucl.Phys.Proc.Suppl.143,205(2005),hep-ex/0409003.
[47]L.B.Auerbachetal.(LSND),Phys.Rev.D63,112001(2001),hep-ex/0101039.
[48]P.VogelandJ.Engel,Phys.Rev.D39,3378(19).[49]
Notethataneutrino-electronmagneticscatteringsearchcaninprinciplebedoneattheSNSwithlowthresholddetectors.Theνemagnetic2scatteringcross-sectionissmallerbyafactorofZthanforneutrino-nucleus,butthereareafactorofZmoreelectrontargets,sothesignalisoverallafactorof10smallerthanforνA.Thisamountsto∼10νemagneticscatteringeventspertonperyearattheSNSabove10keV,forµνatthecurrentνµlimit.TheνemagneticsignalhasnegligibleSMback-ground;howeverabsoluteratesarelowforrealistictargetmassesandlikelytobesubjecttoexperimen-talbackgrounds.
因篇幅问题不能全部显示,请点此查看更多更全内容