entirefunctionshaveonlyrealzeros
by
GeorgeGasper1
DedicatedtothememoryofRalphP.Boas,Jr.(1912–1992)(PublishedinFourierAnalysis:AnalyticandGeometricAspects,W.O.Bray,P.S.MilojevicandC.V.Stanojevic,eds.,MarcelDekker,1994,pp.
171–186)
Abstract
ItisshownhowsumsofsquaresofrealvaluedfunctionscanbeusedtogivenewproofsoftherealityofthezerosoftheBesselfunc-tionsJα(z)whenα≥−1,confluenthypergeometricfunctions0F1(c;z)whenc>0or0>c>−1,LaguerrepolynomialsLαn(z)whenα≥−2,
(α,β)
andJacobipolynomialsPn(z)whenα≥−1andβ≥−1.Besidesyieldingnewinequalitiesfor|F(z)|2,whereF(z)isoneofthesefunc-tions,thederivedidentitiesleadtoinequalitiesfor∂|F(z)|2/∂yand∂2|F(z)|2/∂y2,whichalsogivenewproofsoftherealityofthezeros.
1Introduction
Ina1975surveypaper[11]onpositivityandspecialfunctionsitwasshownhowsumsofsquaresofspecialfunctionscouldbeusedtoprovethenonneg-ativityoftheFej´erkernel,thepositivityofintegralsofBesselfunctions[10]
SupportedinpartbytheNationalScienceFoundationundergrantDMS-9103177.Keywords.Entirefunctions,inequalities,realzeros,sumsofsquares,confluenthyper-geometricfunctions,Besselfunctions,Jacobipolynomials,Laguerrepolynomials.
1
1
andoftheCotes’numbersforsomeJacobiabscissas,aTur´antypeinequalityforBesselfunctions,theAskey-Gasperinequality(cf.[1],[2],[13],[15])(1.1)
nk=0
Pk
(α,0)
(x)≥0,α>−2,−1≤x≤1,
whichdeBranges[5]employedtocompletehisproofoftheBieberbachcon-jecture,andtoprovethemoregeneralinequalities[12](1.2)
(α,β)n(λ+1)k(λ+1)n−kPk(x)k=0
(β,α)(n−k)!Pk(1)
k!
≥0,−1≤x≤1,
when0≤λ≤α+βandβ≥−1/2.Itwasalsopointedoutin[11]that,
sinceoneofJensen’snecessaryandsufficientconditionsfortheRiemannHypothesistohold(giveninP´olya[19])istheconditionthat
(1.3)
∞−∞
∞−∞
Φ(s)Φ(t)ei(s+t)x(s−t)2ndsdt≥0,
−∞ Φ(t)=2 ∞k=1 (2k4π2e9t/2−3k2πe5t/2)e−k 2πe2t , andtheaboveintegralisasquarewhenn=0,themethodofsumsofsquaresissuggestedforproving(1.3). AnotherofJensen’snecessaryandsufficientconditionsfortheRiemannHypothesistoholdisthat(1.5) ∞−∞ ∞−∞ Φ(s)Φ(t)ei(s+t)xe(s−t)y(s−t)2dsdt≥0, −∞ Ξ(z)= ∂2 |Ξ(x+iy)|2≥0,2∂y ∞−∞ −∞ Φ(t)exp(izt)dt=2 2 ∞0 Φ(t)cos(zt)dt. That(1.6)isasufficientconditionfortheRiemannΞ(z)functiontohaveonlyrealzerosfollowsdirectlyfromobservationthat,since|Ξ(x+iy)|2=Ξ(x+iy)Ξ(x−iy)isanonnegativeevenfunctionofy,(1.6)impliesthat|Ξ(x+iy)|2isanonnegativeevenconvexfunctionofywithitsuniqueminimumaty=0,andhenceΞ(x+iy)=0whenevery=0.IfthefunctionΦ(t)in(1.3)and(1.5)isreplacedbyafunctionΨ(t)suchthattheconditionsstatedin[19,§1],aresatisfied,then,by[19,pp.17,18],theinequalitiesin(1.3)and(1.5)arenecessaryandsufficientconditionsfortheFourier(orcosine)transformofΨ(t)tohaveonlyrealzeros.In1913Jensen[18]provedthateachoftheinequalities(1.8) ∂ y|F(x+iy)|2≥0,∂y ∂22 |F(x+iy)|≥0,∂y2−∞ Inviewoftheseobservationsandthesuccessesofthesumsofsquaresmethod(alsosee[14],[16,Chapter8]),sincetheearly1970’sIhavebeeninvestigatinghowsquaresofrealvaluedfunctionscanbeusedtoprovethatcertainentirefunctionshaveonlyrealzerosandtoproveinequalitiesoftheformin(1.8).InthispaperIdemonstratehowcertainseriesexpansionsinsumsofsquaresofspecialfunctionsgivenewproofsoftherealityofthezerosoftheBesselfunctionsJα(z)whenα≥−1,confluenthypergeometricfunctions0F1(c;z)whenc>0or0>c>−1,LaguerrepolynomialsLαn(z) (α,β) whenα≥−2,andJacobipolynomialsPn(z)whenα≥−1andβ≥−1.Here,aselsewhere,z=x+iyisacomplexvariableandxandyarerealvariables.Forthedefinitionsofthesefunctionsandtheirproperties,seeErd´elyi[9]andSzeg˝o[20].Inaddition,itwillbeshownthatbesidesyieldingnewinequalitiesfor|F(z)|2,whereF(z)isoneofthesefunctions,thederivedidentitiesleadtoinequalitiesfor∂|F(z)|2/∂yand∂2|F(z)|2/∂y2,whichalsogivenewproofsoftherealityofthezeros. 3 2Initialobservations Inordertoseehoweasilysumsofsquarescanbeusedtoprovethatallofthezerosofsinzandcoszarereal,itsufficestoobservethatwehavethe(easilyverified)identities(2.1)(2.2) |sinz|2=sin2x+sinh2y,|cosz|2=cos2x+sinh2y andtonotethatsinhy=(ey−e−y)/2>0wheny>0,andsinhy<0wheny<0. Onecanalsotakepartialderivativesoftheidentitiesin(2.1)and(2.2)withrespecttoytoobtain(2.3) ∂∂|sinz|2=|cosz|2=sinh2y∂y∂y whichshowsthat|sinz|2and|cosz|2areincreasing(decreasing)functions ofywheny>0(y<0),andtoobtain ∂2∂22 (2.4)|sinz|=2|cosz|2=2cosh2y=2(cosh2y+sinh2y)≥2,2∂y∂ywhichshowsthat|sinz|2and|cosz|2areconvexfunctionsofy.Then,be-cause|sinz|2and|cosz|2arenonnegativeevenfunctionsofy,itimmediatelyfollowsfrom(2.3)and(2.4)thatsinzandcoszhaveonlyrealzeros. Observethattherealityofthezerosofsinzandcoszalsofollowsfromtheinequalities(2.5)(2.6) |sinz|2>sin2x, |cosz|2>cos2x, (y=0) |sinz|2≥sinh2y,|cosz|2≥sinh2y, (2.7) ∂∂2 y|sinz|=y|cosz|2≥2y2,∂y∂y 4 (2.8) ∂2∂2222 |sinz|=|cosz|≥2coshy∂y2∂y2∂2∂22 |sinz|=2|cosz|2≥2+2sinh2y2∂y∂y (2.9) whichareconsequencesof(2.1)–(2.4). 3 Besselfunctionsand0F1(c;z)functions Sincetheidentitiesandinequalitiesin§2givetherealityofthezerosofthe Besselfunctions[20,(1.71.2)](3.1) J−1(z)=( 221)2cosz,πz J1(z)=( 221)2sinz,πz thissuggeststhatitshouldbepossibletousesumsofsquarestoproveLommel’stheorem(seeWatson[23,p.482])thatallofthezerosoftheBesselfunction[9,7.2(3)](3.2) (z/2)α2 Jα(z)=0F1(α+1;−z/4) Γ(α+1) arerealwhenα>−1.Withthisaiminmindandinordertoworkwithentirefunctions,weset(3.3) Jα(z)=z −α 2−α2 Jα(z)=0F1(α+1;−z/4), Γ(α+1) whichisanevenentirefunctionofzsuchthatJα(z)=Jα(z)whenαisreal.Letα>−1.Then,fromtheproductformula(37)inCarlitz[8],(3.4) (α+1)2k−α 2k |Jα(z)|=(x2+y2)kJα+k(2x). k=0k!(2α+1)kΓ(α+1) 2 ∞ ToexpresseachoftheBesselfunctionsontherightsideof(3.4)asasum ofsquaresofrealvaluedBesselfunctionsobservethatfromtheaddition 5 theoremforBesselfunctions[9,7.15(30)]wehavetheexpansion(3.5) Jα+k(2x)=2 k+α ∞(j+k+α)(2k+2α)jj=0 Γ(k+α) j! (−1)jx2j(Jα+j+k(x))2. Hence,substituting(3.5)into(3.4)andchangingtheorderofsummationwe findthat(3.6)|Jα(z)|= 2 ∞(n+α)(2α)nn=0 αn! (−1)nx2n ×2F1(−n,n+2α;2α+1;1+y2/x2)(Jα+n(x))2. NowapplytheEulertransformationformula[9,2.9(3)](3.7) 2F1(a,b;c;z) =(1−z)−a2F1(a,c−b;c;z/(z−1)) totheabove2F1seriestoobtainthedesiredsumofsquaresexpansionformula(3.8) |Jα(z)|2=(Jα(x))2+2(α+1)y2(Jα+1(x))2 + ∞(2n+2α)(2α+1)n−1n=2 n! y2n ×2F1(−n,1−n;2α+1;1+x2/y2)(Jα+n(x))2. Whenn≥2,α>−1andy=0,thepositivityofthecoefficientsof (Jα+n(x))2in(3.8)followsfrom (3.9)(2α+1)2F1(−n,1−n;2α+1;1+x2/y2)=(2α+1+n2−n) +n(n−1)x/y+ 2 2 n(−n)k(1−n)kk=2 k!(2α+2)k−1 (1+x2/y2)k>0. Hence,sincetherealzerosofJα(x)andJα+1(x)areinterlaced,(3.8)gives asumofsquaresproofthattheentirefunctionsJα(z),andthustheBesselfunctionsJα(z),haveonlyrealzeroswhenα>−1.Lettingα→−1itfollowsthattheBesselfunctionJ−1(z)=limα→−1Jα(z)=−J1(z)hasonlyrealzeros. Noticethattheinequality(3.10)|Jα(z)|2≥(Jα(x))2+2(α+1)(yJα+1(x))2>0,y=0,α>−1, 6 andinfactinfinitelymanyinequalitiesfollowfrom(3.8)byjustdroppingtermsfromtherightsideof(3.8).Analogousto(2.7)–(2.9),itfollowsbydifferentiatingequation(3.6)withrespecttoyandapplying(3.7)thatwealsohavetheidentities ∞∂(n+α+1)(2α+2)n2n22 (3.11)y|Jα(z)|=4yy ∂yn!n=0 ×2F1(−n,−n;2α+2;1+x2/y2)(Jα+n+1(x))2 and(3.12) ∞(n+α+1)(2α+2)n2n∂22 y|J(z)|=4α ∂y2n!n=0 × 2F1(−n,−n;2α2 +2;1+x2/y2)(Jα+n+1(x))2n! y2n +8y× ∞(n+α+2)(2α+3)n+1n=0 2F1(−n,−n −1;2α+3;1+x2/y2)(Jα+n+2(x))2, whichgiveinfinitelymanyinequalities,suchas,e.g.,(3.13)(3.14) y ∂ |Jα(z)|2≥4(α+1)(yJα+1(x))2≥0,∂y α≥−1,α≥−1, ∂222 |J(z)|≥4(α+1)(J(x))≥0,αα+1∂y2eachofwhichprovesthatJα(z)hasonlyrealzeroswhenα≥−1. Inviewof(3.3)therealityofthezerosofJα(z)whenα>−1isequivalenttothestatementthatallofthezerosoftheconfluenthypergeometricfunction0F1(c;z)arerealandnegativewhenc>0.However,itisknown[17]thatthezerosof0F1(c;z)arealsoreal(butnotnecessarilynegative)when−1 |0F1(c;z)|= 2 1 (x2+y2)k0F1(c+2k;2x) k=0k!(c)k(c)2k 7 ∞ and(3.16) (−1)j x2j(0F1(c+2k+2j;x))2.0F1(c+2k;2x)= j=0j!(c+2k+j−1)j(c+2k)2jAsintheBesselfunctioncase,substitute(3.16)into(3.15)andchangetheorderofsummationtoget (−1)n (3.17)|0F1(c;z)|=x2n n=0n!(c+n−1)n(c)2n 2 ∞∞ ×2F1(−n,n+c−1;c;1+y2/x2)(0F1(c+2n;x))2 which,byapplyingthetransformationformula(3.7),gives(3.18)|0F1(c;z)|= 2 1 y2n n=0n!(n+c−1)n(c)2n ×2F1(−n,1−n;c;1+x2/y2)(0F1(c+2n;x))2. ∞ Whenc>0andy=0thecoefficientof(0F1(c+2n;x))2intheseriesin (3.18)isobviouslypositive.Hence,since0F1(c;x)>0whenc>0andx≥0,(3.18)givesanotherproofthat0F1(c;z)hasonlyrealnegativezeroswhenc>0. Tohandlethecase−1 (3.19)y|c0F1(c;z)|=2yy2n ∂yn=0n!(c+1)2n(c+1)2n+1 ×2F1(−n,−n;c+1;1+x2/y2)(0F1(c+2n+2;x))2 and (3.20) ∞∂2(c+1)n2 |cF(c;z)|=2y2n012∂yn=0n!(c+1)2n(c+1)2n+1 ×2F1(−n,−n;c+1;1+x2/y2)(0F1(c+2n+2;x))2+4y 2 (c+2)n+1 y2n n=0n!(c+1)2n+2(c+1)2n+3 ∞ ×2F1(−n,−n−1;c+2;1+x2/y2)(0F1(c+2n+4;x))2 8 which,inparticular,givetheinequalities 2∂ (3.21)yc(c+1)0F1(c;z)≥2(c+1)(y0F1(c+2;x))2, ∂y c≥−1, and(3.22) ∂222 |c(c+1)F(c;z)|≥2(c+1)(F(c+2;x)),0101∂y2c≥−1. Sincethecoefficientsontherighthandsidesof(3.19)–(3.22)areclearlypositivewhenc>−1andy=0,theseformulasprovethatthefunctionsc(c+1)0F1(c;z)haveonlyrealzeroswhenc≥−1,whereitisunderstoodthatc(c+1)0F1(c;z)istobereplacedbyitsc→0limitcasez0F1(2;z)whenc=0,andbyitsc→−1limitcasez20F1(3;z)/2whenc=−1. 4 Laguerrepolynomialsand1F1(a;c;z)func-tions Lαn(z)= (α+1)n 1F1(−n;α+1;z)n! Γ(n+α+1) δnm,n,m=0,1,2,..., n! Whenα>−1theLaguerrepolynomials(4.1) satisfytheorthogonalityrelation (4.2) ∞0 αα−x Lαdx=n(x)Lm(x)xe fromwhichitfollowsbyastandardargument(cf.[20,§3.3])thatthezeros ofLαn(z)arerealandpositive.Analogoustothelastpartoftheprevioussection,inthissectionwewillderivesomesumsofsquaresexpansionswhich,besidesprovingtherealityofthezerosofthesepolynomialswhenα>−1,alsoprovethattheyhaveonlyrealzeros(notnecessarilypositive)when−1≥α≥−2,whereLαn(z)isdefinedtobetheα→−klimitcaseof(4.1)whenαisanegativeinteger−k.ThusLα1(z)=α+1−z,whichhasanegative 2 zerowhenα<−1,andLα2(z)=((α+1)(α+2)−2(α+2)z+z)2,whichhasnon-realzeroswhenα<−2. 9 Letαberealvalued.SubstitutingthesumofsquaresofLaguerrepoly-nomialsexpansion(from[7,(91)])(4.3) +2kLαn−k(2x) = n−kj=0 (n−k−j)!(2k+2j+α)(2k+α)j j!(2k+α)(2k+α+1)n+j−k j2j ×(−1)x 2 α+2k+2j Ln−k−j(x) intothespecialcaseof[3,(5.4)](4.4) 2 |Lαn(z)| n (α+1)n1+2k=(x2+y2)kLαn−k(2x)n!k=0k!(α+1)k andchangingtheorderofsummationyields(4.5) 2 |Lα(z)|n n (α+1)n(n−k)!(2k+α)(α)k=(−1)kx2k n!k!α(α+1)n+kk=0 ×2F1(−k,k+α;α+1;1+y/x) Thenapplicationof(3.7)gives(4.6) 2 |Lαn(z)| n (α+1)n(n−k)!(2k+α)(α)k2k=y n!k!α(α+1)n+kk=0 22 2 α+2k Ln−k(x) . ×2F1(−k,1−k;α+1;1+x/y) 22 2 α+2k Ln−k(x) . SinceLα0(x)≡1andthecoefficientsontherighthandsideof(4.6)areclearlypositivewhenα>−1andy=0,theexpansion(4.6)provesthattheLaguerrepolynomialshaveonlyrealzeroswhenα>−1.Thisalsofollows,inparticular,fromtheinequalities(4.7) 2 |Lαn(z)|≥ (α+1)n y2n2F1(−n,1−n;α+1;1+x2/y2), n!n!(n+α)n α>−1, and(4.8) 22α(z)|≥|L(x)|+|Lαnn (α+1)n y2n, n!n!(n+α)n 10 α>−1,n≥1, whichareconsequencesof(4.6). Nowdifferentiateequation(4.5)withrespecttoyandapply(3.7)toderivetheexpansions n−1∂(n−k−1)!(2k+α+2)(α+2)k2k2α2 (4.9)y|Ln(z)|=2yy ∂yn!k!(n+α+1)k+1k=0 ×2F1(−k,−k;α+2;1+x/y) and 22 2 α+2k+2 Ln−k−1(x) ,n≥1, (4.10) n−1∂2(n−k−1)!(2k+α+2)(α+2)k2k2α |L(z)|=2y∂y2nn!k!(n+α+1)k+1k=0 ×2F1(−k,−k;α+2;1+x/y)+4y 2n−2 2 2 2 α+2k+2 Ln−k−1(x) (n−k−2)!(2k+α+4)(α+3)k+12k y n!k!(n+α+1)k+2k=0 2 2 ×2F1(−k,−k−1;α+3;1+x/y) whichyield,e.g.,theinequalities(4.11)and(4.12) 2 α+2k+4 Ln−k−2(x), n≥1, ∂2(α+2)α+222α y|Ln(z)|≥yLn−1(x),∂yn(n+α+1)2(α+2)α+22∂22α |L(z)|≥L(x),∂y2nn(n+α+1)n−1 α>−2,n≥1, α>−2,n≥1, andprove(afterlettingα→−2)thatthepolynomialsLαn(z)haveonlyreal zeroswhenα≥−2. Fortheconfluenthypergeometricfunctions1F1(a;c;z)withaandcrealvaluedandc=0,−1,−2,...,useoftheexpansionformulas[7,(42)and(43)]insteadof(4.3)and(4.4)yieldsthenonterminatingextensionof(4.5)(4.13)|1F1(a;c;z)|= 2 (a)k(c−a)k x2k k=0k!(c)2k(c+k−1)k ∞ ×2F1(−k,c+k−1;c;1+y2/x2)(1F1(a+k;c+2k;x))2 11 andhence,by(3.7),(4.14)|1F1(a;c;z)|= 2 (a)k(c−a)k (−1)ky2k k=0k!(c)2k(c+k−1)k ∞ ×2F1(−k,1−k;c;1+x2/y2)(1F1(a+k;c+2k;x))2. Thendifferentiationofequation(4.13)withrespectofyandapplicationof (3.7)givesthefollowingextensionsof(4.9)and(4.10)(andalsoof(3.19)and(3.20)),respectively, (4.15) ∞∂(a)k+1(c−a)k+1(c+1)22 (−1)k+1y2ky|c(c+1)1F1(a;c;z)|=2y ∂yk=0k!(c+2)2k(c+k+1)k ×2F1(−k,−k;c+1;1+x2/y2)(1F1(a+k+1;c+2k+2;x))2 and (4.16) ∞(a)k+1(c−a)k+1(c+1)∂22k+12k |c(c+1)F(a;c;z)|=2(−1)y11∂y2k!(c+2)(c+k+1)2kkk=0 ×2F1(−k,−k;c+1;1+x2/y2)(1F1(a+k+1;c+2k+2;x))2+4y 2 (a)k+2(c−a)k+2 (−1)ky2k k=0k!(c+2)2k+2(c+k+3)k ∞ ×2F1(−k,−k−1;c+2;1+x2/y2)(1F1(a+k+2;c+2k+4;x))2. Ifa=−nisanegativeintegerandc=α+1,then(4.13)–(4.16)reduce to(4.5),(4.6),(4.9),(4.10),respectively.Ifa=c+nwithnanonnegativeinteger,then(4.15)and(4.16)reducetoterminatingsumsofsquaresexpan-sionswithnonnegativecoefficientswhichprovethatc(c+1)1F1(c+n;c;z),asafunctionofz,hasonlyrealzeroswhenc≥−1,wherethisfunctionistobereplacedbyitsc→0andc→−1limitcaseswhenc=0andc=−1,respectively.Itshouldbenotedthat,inviewofKummer’stransformationformula[9,6.3(7)](4.17) 1F1(a;c;x) =ex1F1(c−a;c;−x), theseresultsonthezerosofc(c+1)1F1(c+n;c;z)areequivalenttothoseobtainedabovefortheLaguerrepolynomials. 12 5Jacobipolynomials (α,β) (z)=Pn Whenα>−1andβ>−1theJacobipolynomials(5.1) (α+1)n 2F1(−n,n+α+β+1;α+1;(1−z)/2)n! satisfytheorthogonalityrelation (5.2) 1−1 (α,β)(α,β)Pn(x)Pm(x)(1−x)α(1+x)βdx=0, n=m, forn,m=0,1,2,...,andhence,by[20,Theorem3.3.1],thesepolynomials haveonlyrealzeros.Inourderivationofsumsofsquaresexpansionswhichimplytherealityofthezerosofthesepolynomialswewillstartoutbyderivingsumsofsquaresexpansionsfornonterminating2F1(a,b;c;z)hypergeometricserieswith|z|<1(forconvergence). Leta,b,cberealvalued,c=0,−1,−2,...,and|z|<1.Thenformula[6,(51)]givestheexpansion(5.3) |2F1(a,b;c;z)|= 2 ∞(a)k(b)k(c−a)k(c−b)kk=0 k!(c)k(c)2k (x2+y2)k ×2F1(a+k,b+k;c+2k;2x−x2−y2). Unfortunately,applicationoftheinversion[6,(50)]of[6,(51)]toeachofthe22 2F1(a+k,b+k;c+2k;2x−x−y)functionsontherightsideofequation(5.3)justreturnsonebacktothefunctionthatisontheleftside.Therefore,weuseformulas(44),(45),(50)in[6]toobtain,respectively,theexpansions(5.4)= j=0 2F1(a +k,b+k;c+2k;2x−x2−y2) (−1)j(x2+y2)j2F1(a+k+j,b+k+j;c+2k+j;2x), ∞(a+k)j(b+k)j j!(c+2k)j (5.5) 2F1(a +k+j,b+k+j;c+2k+j;2x)= ∞(a+k+j)m(b+k+j)mm=0 m!(c+2k+j)m x2m ×2F1(a+k+j+m,b+k+j+m;c+2k+j+m;2x−x2), 13 (5.6)= (a+k+j+m)n(b+k+j+m)n(c−a+k)n(c−b+k)n (−1)nx2n n!(c+2k+j+m+n−1)n(c+2k+j+m)2nn=0 2F1(a ∞ +k+j+m,b+k+j+m;c+2k+j+m;2x−x2) ×(2F1(a+k+j+m+n,b+k+j+m+n;c+2k+j+m+2n;x))2,andthensubstitutetheseexpansionsinturninto(5.3),changetheorderofsummationandusethebinomialtheoremtoobtain(5.7) |2F1(a,b;c;z)|= 2 (a)m(b)m(c−a)j(c−b)j (−1)mx2jy2m−2j m=0j=0j!(m−j)!(c)m+j(m+c−1)j m∞ ×2F1(−j,m+c−1;c;1+y2/x2)(2F1(m+a,m+b;m+j+c;x))2.Applicationof(3.7)tothefirst2F1seriesontherightsideof(5.7)gives(5.8)|2F1(a,b;c;z)|= 2 (a)m(b)m(c−a)j(c−b)j (−1)m+jy2m m=0j=0j!(m−j)!(c)m+j(m+c−1)j m∞ ×2F1(−j,1−m;c;1+x2/y2)(2F1(m+a,m+b;m+j+c;x))2, whichcontains(4.14)asalimitcase.Whena=−nisanegativeinteger, b=n+α+β+1andc=α+1,itfollowsfrom(5.8)that(5.9) = 2n!(α,β) Pn(1−2z) (α+1)n mn(−n)m(n+α+β+1)m(n+α+1)j(−n−β)jm=0j=0 j!(m−j)!(α+1)m+j(m+α)j (−1)m+jy2m ×2F1(−j,1−m;α+1;1+x2/y2)(2F1(m−n,m+n+α+β+1;m+j+α+1;x))2, (α,β) whichgivesasumsofsquaresproofthattheJacobipolynomialsPn(z)haveonlyrealzeroswhenα,β>−1(sincethecoefficientsin(5.9)arethenclearlypositive)andhence,bycontinuity,whenα,β≥−1.Therestriction (α,β) thatα,β≥−1cannotbeextendedtoα,β≥−2becauseP2(z)hasnon-realzeroswhenα,β>−2andα+β<−3. Asinsections3and4onemayrepeatedlydifferentiate(5.7)withrespecttoyandapply(3.7)toobtainextensionsof(4.15),(4.16),etc.But,sincetheresultingidentitiesarequitelengthlyanddonotaddanyadditional(α,β) 14 forwhichtheJacobipolynomialshaveonlyrealzeros,wewillomitthemandonlypointoutthatthefirsttwodifferentiationsgiveidentitiesthatyield,inparticular,theinequalities(5.10)and(5.11) 2∂22n(2n−1)(n+α+β+1)n(α+1)n2n−2(α,β) yP(1−2z)≥ ∂y2nn!n! 2∂2n(n+α+β+1)n(α+1)n2n(α,β) yPn(1−2z)y≥∂yn!n! whenn≥1andα,β≥−1. Insubsequentpapersitwillbeshownthatsquaresofrealvaluedfunctionscanalsobeusedtoprovetherealityofthezerosofsomenon-classicalfamiliesoforthogonalpolynomials,ofthecosinetransforms 0∞ e−acoshtcosztdt, a>0, andofsomeotherentirefunctions. References [1]R.AskeyandG.Gasper,PositiveJacobipolynomialsumsII,Amer.J.Math.98 (1976),709–737.[2]R.AskeyandG.Gasper,Inequalitiesforpolynomials,inTheBieberbachConjecture, ProceedingsoftheSymposiumontheOccasionoftheProof,SurveysandMonographs,No.21,Amer.Math.Soc.,Providence,RI(1986),7–32.[3]W.N.Bailey,OntheproductoftwoLegendrepolynomialswithdifferentarguments, Proc.LondonMath.Soc.(2)41(1936),215–220.[4]R.P.Boas,EntireFunctions,AcademicPress,Inc.,NewYork,1954. [5]L.deBranges,AproofoftheBieberbachconjecture,ActaMath.154(1985),137–152.[6]J.L.BurchnallandT.W.Chaundy,ExpansionsofAppell’sdoublehypergeometric functions,Quart.J.Math.(Oxford)11(1940),249–270.[7]J.L.BurchnallandT.W.Chaundy,ExpansionsofAppell’sdoublehypergeometric functions(II),Quart.J.Math.(Oxford)12(1941),112–128. 15 [8]L.Carlitz,Somepolynomialsrelatedtotheultrasphericalpolynomials,Portugaliae Math.20(1961),127–136.[9]A.Erdelyi,HigherTranscendentalFunctions,vols.1and2,McGrawHill,NewYork, 1953.[10]G.Gasper,PositiveintegralsofBesselfunctions,SIAMJ.Math.Anal.6(1975), 868–881.[11]G.Gasper,Positivityandspecialfunctions,inTheoryandApplicationsofSpecial Functions,R.Askey,ed.,AcademicPress,NewYork(1975),375–433.[12]G.Gasper,Positivesumsoftheclassicalorthogonalpolynomials,SIAMJ.Math. Anal.8(1977),423–447.[13]G.Gasper,AshortproofofaninequalityusedbydeBrangesinhisproofofthe Bieberbach,RobertsonandMilinconjectures,ComplexVariables:TheoryAppl.7(1986),45–50.[14]G.Gasper,q-ExtensionsofClausen’sformulaandoftheinequalitiesusedbyde BrangesinhisproofoftheBieberbach,Robertson,andMilinconjectures,SIAMJ.Math.Anal.20(19),1019–1034.[15]G.Gasper,Usingsymboliccomputeralgebraicsystemstoderiveformulasinvolv-ingorthogonalpolynomialsandotherspecialfunctions,inOrthogonalPolynomials:TheoryandPractice,ed.byP.Nevai,KluwerAcademicPublishers,Boston,19,163–179.[16]G.GasperandM.Rahman,BasicHypergeometricSeries,CambridgeUniversity Press,1990.[17]E.Hille,Noteonsomehypergeometricseriesofhigherorder,J.LondonMath.Soc. 4(1929),50–54.[18]J.L.W.V.Jensen,Recherchessurlath´eoriedes´equations,ActaMath.36(1913), 181–195. ¨[19]G.P´olya,Uberdiealgebraisch-funktionentheoretischenUntersuchungenvon J.L.W.V.Jensen,Kgl.DanskeVidenskabernesSelskab.Math.-Fys.Medd.7(17)(1927),pp.3–33;reprintedinhisCollectedPapers,Vol.II,pp.278–308.[20]G.Szeg˝o,OrthogonalPolynomials,4thed.,Amer.Math.Soc.Colloq.Publ.23,Prov-idence,R.I.1975.[21]E.C.Titchmarsh,TheTheoryoftheRiemannZeta-Function,2ndedition(Revised byD.R.Heath-Brown),OxfordUniv.Press,OxfordandNewYork,1986.[22]R.S.Varga,ScientificComputationonMathematicalProblemsandConjectures, CBMS-NSFRegionalConferenceSeriesinAppliedMathematics,SIAM,Philadel-phia,1990.[23]G.N.Watson,TheoryofBesselFunctions,CambridgeUniv.Press,Cambridgeand NewYork,1944. 16 GeorgeGasper DepartmentofMathematicsNorthwesternUniversityEvanston,IL60208 E-Mail:g-gasper@nwu.edu 17
因篇幅问题不能全部显示,请点此查看更多更全内容