实验一: 系统响应及系统稳定性
%实验1:系统响应及系统稳定性
close all;clear all
%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性==
A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和A
x1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)
x2n=ones(1,128); %产生信号x2(n)=u(n)
hn=impz(B,A,58); %求系统单位脉冲响应h(n)
subplot(2,2,1);y='h(n)';tstem(hn,y); %调用函数tstem绘图
title('(a) 系统单位脉冲响应h(n)');box on
y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)
subplot(2,2,2);y='y1(n)';tstem(y1n,y);
title('(b) 系统对R8(n)的响应y1(n)');box on
y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)
..
.
subplot(2,2,4);y='y2(n)';tstem(y2n,y);
title('(c) 系统对u(n)的响应y2(n)');box on
%===内容2:调用conv函数计算卷积========
x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)
h1n=[ones(1,10) zeros(1,10)];
h2n=[1 2.5 2.5 1 zeros(1,10)];
y21n=conv(h1n,x1n);
y22n=conv(h2n,x1n);
figure(2)
subplot(2,2,1);y='h1(n)';tstem(h1n,y); %调用函数tstem绘图
title('(d) 系统单位脉冲响应h1(n)');box on
subplot(2,2,2);y='y21(n)';tstem(y21n,y);
title('(e) h1(n)与R8(n)的卷积y21(n)');box on
subplot(2,2,3);y='h2(n)';tstem(h2n,y); %调用函数tstem绘图
..
.
title('(f) 系统单位脉冲响应h2(n)');box on
subplot(2,2,4);y='y22(n)';tstem(y22n,y);
title('(g) h2(n)与R8(n)的卷积y22(n)');box on
%=========内容3:谐振器分析================
un=ones(1,256); %产生信号u(n)
n=0:255;
xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号
A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和A
y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)
y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)
figure(3)
subplot(2,1,1);y='y31(n)';tstem(y31n,y);
title('(h) 谐振器对u(n)的响应y31(n)');box on
subplot(2,1,2);y='y32(n)';tstem(y32n,y);
..
.
title('(i) 谐振器对正弦信号的响应y32(n)');box on
tstem 程序清单
function tstem(xn,yn)
%时域序列绘图函数
% xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串)
n=0:length(xn)-1;
stem(n,xn,'.');box on
xlabel('n');ylabel(yn);
axis([0,n(end),min(xn),1.2*max(xn)])
实验二 时域采样与频域采样
1 时域采样理论的验证程序清单
% 时域采样理论验证程序exp2a.m
Tp=/1000; %观察时间Tp=微秒
%产生M长采样序列x(n)
..
.
% Fs=1000;T=1/Fs;
Fs=1000;T=1/Fs;
M=Tp*Fs;n=0:M-1;
A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;
xnt=A*exp(-alph*n*T).*sin(omega*n*T);
Xk=T*fft(xnt,M); %M点FFT[xnt)]
yn='xa(nT)';subplot(3,2,1);
tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图
box on;title('(a) Fs=1000Hz');
k=0:M-1;fk=k/Tp;
subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');
xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])
%========================================
% Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。
..
.
2 频域采样理论的验证程序清单
%频域采样理论验证程序exp2b.m
M=27;N=32;n=0:M;
%产生M长三角波序列x(n)
xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];
Xk=fft(xn,1024);%1024点FFT[x(n)], 近似序列x(n)的TF
X32k=fft(xn,32) ;%32点FFT[x(n)]
x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)
X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)
x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)
subplot(3,2,2);stem(n,xn,'.');box on
title('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])
k=0:1023;wk=2*k/1024; %
..
.
subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');
xlabel('\\omega/\\pi');ylabel('|X(e^j^\\omega)|');axis([0,1,0,200])
k=0:N/2-1;
subplot(3,2,3);stem(k,abs(X16k),'.');box on
title('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])
n1=0:N/2-1;
subplot(3,2,4);stem(n1,x16n,'.');box on
title('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])
k=0:N-1;
subplot(3,2,5);stem(k,abs(X32k),'.');box on
title('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])
n1=0:N-1;
subplot(3,2,6);stem(n1,x32n,'.');box on
title('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])
..
.
实验三:用FFT对信号作频谱分析
% 用FFT对信号作频谱分析
clear all;close all
%实验内容(1)===================================================
x1n=[ones(1,4)]; %产生序列向量x1(n)=R4(n)
M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)
x3n=[xb,xa];
X1k8=fft(x1n,8); %计算x1n的8点DFT
X1k16=fft(x1n,16); %计算x1n的16点DFT
X2k8=fft(x2n,8); %计算x2n的8点DFT
X2k16=fft(x2n,16); %计算x2n的16点DFT
X3k8=fft(x3n,8); %计算x3n的8点DFT
X3k16=fft(x3n,16); %计算x3n的16点DFT
%以下绘制幅频特性曲线
..
.
subplot(2,2,1);mstem(X1k8); %绘制8点DFT的幅频特性图
title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X1k8))])
subplot(2,2,3);mstem(X1k16); %绘制16点DFT的幅频特性图
title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X1k16))])
figure(2)
subplot(2,2,1);mstem(X2k8); %绘制8点DFT的幅频特性图
title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X2k8))])
subplot(2,2,2);mstem(X2k16); %绘制16点DFT的幅频特性图
title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X2k16))])
subplot(2,2,3);mstem(X3k8); %绘制8点DFT的幅频特性图
..
.
title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X3k8))])
subplot(2,2,4);mstem(X3k16); %绘制16点DFT的幅频特性图
title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X3k16))])
%实验内容(2) 周期序列谱分析==================================
N=8;n=0:N-1; %FFT的变换区间N=8
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
X4k8=fft(x4n,8); %计算x4n的8点DFT
X5k8=fft(x5n,8); %计算x5n的8点DFT
N=16;n=0:N-1; %FFT的变换区间N=16
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
..
.
X4k16=fft(x4n); %计算x4n的16点DFT
X5k16=fft(x5n); %计算x5n的16点DFT
figure(3)
subplot(2,2,1);mstem(X4k8); %绘制8点DFT的幅频特性图
title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X4k8))])
subplot(2,2,3);mstem(X4k16); %绘制16点DFT的幅频特性图
title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X4k16))])
subplot(2,2,2);mstem(X5k8); %绘制8点DFT的幅频特性图
title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');
axis([0,2,0,1.2*max(abs(X5k8))])
subplot(2,2,4);mstem(X5k16); %绘制16点DFT的幅频特性图
title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');
..
.
axis([0,2,0,1.2*max(abs(X5k16))])
%实验内容(3) 模拟周期信号谱分析===============================
figure(4)
Fs=;T=1/Fs;
N=16;n=0:N-1; %FFT的变换区间N=16
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)16点采样
X6k16=fft(x6nT); %计算x6nT的16点DFT
X6k16=fftshift(X6k16); %将零频率移到频谱中心
Tp=N*T;F=1/Tp; %频率分辨率F
k=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点
..
.
频率(以零频率为中心)
subplot(3,1,1);stem(fk,abs(X6k16),'.');box on %绘制8点DFT的幅频特性图
title('(6a) 16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');
axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])
N=32;n=0:N-1; %FFT的变换区间N=16
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)32点采样
X6k32=fft(x6nT); %计算x6nT的32点DFT
X6k32=fftshift(X6k32); %将零频率移到频谱中心
Tp=N*T;F=1/Tp; %频率分辨率F
k=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)
subplot(3,1,2);stem(fk,abs(X6k32),'.');box on %绘制8点DFT的幅频特性图
title('(6b) 32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');
axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])
N=;n=0:N-1; %FFT的变换区间N=16
..
.
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)点采样
X6k=fft(x6nT); %计算x6nT的点DFT
X6k=fftshift(X6k); %将零频率移到频谱中心
Tp=N*T;F=1/Tp; %频率分辨率F
k=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)
subplot(3,1,3);stem(fk,abs(X6k),'.'); box on%绘制8点DFT的幅频特性图
title('(6a) 点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');
axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k))])
mstem程序清单
function mstem(Xk)
% mstem(Xk)绘制频域采样序列向量Xk的幅频特性图
M=length(Xk);
k=0:M-1;wk=2*k/M; %产生M点DFT对应的采样点频率(关于π归一化值)
stem(wk,abs(Xk),'.');box on %绘制M点DFT的幅频特性图
..
.
xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(Xk))])
实验四IIR数字滤波器设计及软件实现
% IIR数字滤波器设计及软件实现
clear all;close all
Fs=10000;T=1/Fs; %采样频率
%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st
st=mstg;
%低通滤波器设计与实现=========================================
fp=280;fs=450;
wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A
y1t=filter(B,A,st); %滤波器软件实现
% 低通滤波器设计与实现绘图部分
..
.
figure(2);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_1(t)';
subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形
%带通滤波器设计与实====================================================
fpl=440;fpu=560;fsl=275;fsu=900;
wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A
y2t=filter(B,A,st); %滤波器软件实现
% 带通滤波器设计与实现绘图部分(省略)
%高通滤波器设计与实================================================
fp=0;fs=600;
..
现
现
.
wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A
y3t=filter(B,A,st); %滤波器软件实现
% 高低通滤波器设计与实现绘图部分(省略)
myplot程序清单
function myplot(B,A)
%myplot(B,A)
%时域离散系统损耗函数绘图
%B为系统函数分子多项式系数向量
%A为系统函数分母多项式系数向量
[H,W]=freqz(B,A,1000);
m=abs(H);
plot(W/pi,20*log10(m/max(m)));grid on;
..
.
xlabel('\\omega/\\pi');ylabel('幅度(dB)')
axis([0,1,-80,5]);title('损耗函数曲线');
tplot程序清单
function tplot(xn,T,yn)
%时域序列连续曲线绘图函数
% xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串)
% T为采样间隔
n=0:length(xn)-1;t=n*T;
plot(t,xn);
xlabel('t/s');ylabel(yn);
axis([0,t(end),min(xn),1.2*max(xn)])
实验五:FIR数字滤波器设计与软件实现
% FIR数字滤波器设计及软件实现
clear all;close all;
..
.
%==调用xtg产生信号xt, xt长度N=1000,并显示xt及其频谱,=========
N=1000;xt=xtg(N);
fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % 输入给定指标
% (1) 用窗函数法设计滤波器
wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)
B=2*pi*(fs-fp)/Fs; %过渡带宽度指标
Nb=ceil(11*pi/B); %blackman窗的长度N
hn=fir1(Nb-1,wc,blackman(Nb));
Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性
ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波
%以下为用窗函数法设计法的绘图部分(滤波器损耗函数,滤波器输出信号波形)
%省略
% (2) 用等波纹最佳逼近法设计滤波器
fb=[fp,fs];m=[1,0];
..
% 确定remezord函数所需参数f,m,dev
.
dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];
[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数
hn=remez(Ne,fo,mo,W); % 调用remez函数进行设计
Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性
yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波
%以下为用等波纹设计法的绘图部分(滤波器损耗函数,滤波器输出信号yw(nT)波形)
%省略
..
因篇幅问题不能全部显示,请点此查看更多更全内容