中职数学基础知识汇总
预备知识:
1.完全平方和(差)公式: (a+b)=a+2ab+b (a-b)=a-2ab+b 2.平方差公式: a-b=(a+b)(a-b)
3.立方和(差)公式: a+b=(a+b)(a-ab+b) a-b=(a-b)(a+ab+b)
3
3
2
2
3
3
2
2
2
22
2
2
2
2
2
第一章 集合
1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。 2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
3. 常用数集:N(自然数集)、Z(整数集)、Q(有理数集)、R(实数集)、N(正整数集) 4. 元素与集合、集合与集合之间的关系:
(1) 元素与集合是“”与“”的关系。 (2) 集合与集合是“Í” “”“=”“/Í”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑Ф是否满足题意) (2)一个集合含有n个元素,则它的子集有2个,真子集有2-1个,非空真子集有2-2个。 5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)A(2)An
n
n
+
B={x|x挝A且xB={x|x挝A或xB}:A与B的公共元素组成的集合
B}:A与B的所有元素组成的集合(相同元素只写一次)。
(3)CUA:U中元素去掉A中元素剩下的元素组成的集合。 注:CU(AB)CUACUB CU(AB)=CUACUB
6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。 7. 充分必要条件:p是q的……条件 p是条件,q是结论
如果pq,那么p是q的充分条件;q是p的必要条件. 如果pq,那么p是q的充要条件
第二章 不等式
1. 不等式的基本性质:(略)
注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。 (2)不等式两边同时乘以负数要变号!!
(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。 2. 重要的不等式:
(1)ab2ab,当且仅当a22b时,等号成立。
(3) b时,等号成立。
(2)ab2ab(a,bR),当且仅当a注:
ab(算术平均数)ab(几何平均数) 23. 一元一次不等式的解法(略)
专业 知识分享
完美WORD格式
4. 一元二次不等式的解法 (1) 保证二次项系数为正
(2) 分解因式(十字相乘法、提取公因式、求根公式法),目的是求根: (3) 定解:(口诀)大于取两边,小于取中间。 5. 绝对值不等式的解法 若a|x|aaxa 0,则|x|axa或xa分式不等式的解法:与二次不等式的解法相同。注:分母不能为0.
第三章 函数
1. 函数
(1)定义:设A、B是两个非空数集,如果按照某种对应法则f,对A内任一个元素x,在B中总有一个且只
有一个值y与它对应,则称f是集合A到B的函数,可记为:f:A→B,或f:x→y.其中A叫做函数f的定义域.函数f在xa的函数值,记作f(a),函数值的全体构成的集合C(C⊆B),叫做函数的值域.
(2)函数的表示方法:列表法、图像法、解析法。
注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单。 2. 函数的三要素:定义域、值域、对应法则
(1) 定义域的求法:使函数(的解析式)有意义的x的取值范围
主要依据:分母不能为0,偶次根式的被开方式0,
特殊函数定义域:yx,x0 ya,(a0且a1),xR ylogax,(a0且a1),x0 (2) 值域的求法:
0xy的取值范围
① 正比例函数:ykx 和 一次函数:ykxb的值域为R
② 二次函数:yaxbxc的值域求法:配方法。如果x的取值范围不是R则还需画图像 ③ 反比例函数:y21的值域为{y|y0} x④ 另求值域的方法:换元法、不等式法、数形结合法、函数的单调性等等。 (3) 解析式求法:在求函数解析式时可用换元法、构造法、待定系数法等。 3. 函数图像的变换 (1) 平移
yf(x)向右平移向左平移yf(xa) yf(xa) yf(x)a个单位a个单位yf(x)向上平移向下平移yf(x)a yf(x)yf(x)a
a个单位a个单位 专业 知识分享
完美WORD格式
(2) 翻折
yf(x)沿x轴保留x轴上方图像yf(x) yf(x)y|f(x)|
上、下对折下方翻折到上方4. 函数的奇偶性
(1) 定义域关于原点对称 (2) 若f(x)f(x)注:①若奇函数在x奇 若f(x)f(x)偶
0处有意义,则f(0)0
0)为偶函数
②常值函数f(x)a(a③f(x)0既是奇函数又是偶函数 5. 函数的单调性
f(x1)f(x2),称f(x)在[a,b]上为增函数对于x1、x2[a,b]且x1x2,若
f(x)f(x),称f(x)在[a,b]上为减函数12增函数:x值越大,函数值越大;x值越小,函数值越小。
减函数:x值越大,函数值反而越小;x值越小,函数值反而越大。 6. 二次函数
(1)二次函数的三种解析式
①一般式:f(x)axbxc(a220)
,其中(k,h)为顶点 0)
,其中x1、x2是f(x)0的两根 0)
②顶点式:f(x)a(xk)h (a③两根式:f(x)a(xx1)(xx2) (a(2)图像与性质
二次函数的图像是一条抛物线,有如下特征与性质: ① 开口 a0开口向上 a0开口向下
b4acb2b,) ② 对称轴:x 顶点坐标:(2a4a2ab0有两交点xx21a ③ 与x轴的交点:0有1交点 ④ 根与系数的关系:(韦达定理)c0无交点x1x2a⑤f(x)axbxc为偶函数的充要条件为b0 ⑥二次函数(二次函数恒大(小)于0)
2a0a0f(x)0图像位于x轴上方 f(x)0图像位于x轴下方
00 专业 知识分享
完美WORD格式
⑦若二次函数对任意x都有f(tx)f(tx),则其对称轴是xt。
第四章 指数函数与对数函数
1. 指数幂的性质与运算 (1)根式的性质:
①n为任意正整数,(na)na ②当n为奇数时,nana;当n为偶数时,nan|a|
③零的任何正整数次方根为零;负数没有偶次方根。 (2) 零次幂:a1 (a0) (3) 负数指数幂:a(4) 分数指数幂:an01* (a0,nN) namnnam (a0,m,nN且n1)
(5) 实数指数幂的运算法则:(a0,m,nR)
①aaamnmn ②(a)amnmn ③(ab)ab
nnn2. 幂运算时,注意将小数指数、根式都统一化为分数指数;一般将每个数都化为最小的一个数的n次方。
当a0时,yxa在(0,)上单调递增3. 幂函数yx a)上单调递减当a0时,yx在(0,a4. 指数与对数的互化:abNlogaNb (a0且a1) 、 (N0)
logaN5. 对数基本性质: ①logaa1 ②loga10 ③aN ④logaaNN 1
logba⑤logab与logba互为倒数logablogba1logab⑥logambnnlogab m6. 对数的基本运算:
loga(MN)logaMlogaN loga7. 换底公式:logaMlogaMlogaN NNlogbN (b0且b1)
logba对数函数 8. 指数函数、对数函数的图像和性质
定 义 指数函数 yax(a0,a1的常数) ylogax(a0,a1的常数) 专业 知识分享
完美WORD格式
图 像 性 质 (3)(1) xR,y0 (2) 图像经过(0,1)点 (1) x0,yR (2) 图像经过(1,0)点 a1,yax在R上为增函数;x0a1,ya在R上为减函数。 (3)a1,ylogax在(0,)上为增函数;0a1,ylogax在(0,)上为减函数 9. 利用幂函数、指数函数、对数函数的单调性比较两个数的大小,将其变为同底、同幂(次)或用换底公式或是利用
中间值0,1来过渡。
10. 指数方程和对数方程:指数式和对数式互化 同底法 换元法 ④取对数法
注:解完方程要记得验证根是否是增根,是否失根。
第五章 数列
定 义 注:当公差d通项公式 推 论 (1)d等差数列 每一项与前一项之差为同一个常数 等比数列 每一项与前一项之比为同一个常数 a2a1a3a2anan1d aa2a3nq(q0) a1a2an1注:等比数列各项及公比均不能为0; 当公比为1时,数列为常数列 0时,数列为常数列 ana1(n1)d ana1qn1 (1)qnmanam nman am(2)anam(nm)d (3)若mn(2)anamqnm pq,则amanapaq (3)若mnpq,则amanapaq 三个数a、b、c成等比数列,则有 中项公式 前三个数a、b、c成等差数列,则有 2bacbac 2b2ac a1(1qn)a1anqSn(q1) 1q1qn(a1an)n(n1)项和Snna1d 22公式 专业 知识分享
n完美WORD格式
1. 已知前n项和Sn的解析式,求通项an
(n1)S1an
SS(n2)n1n2. 弄懂等差、等比数通项公式和前n项和公式的证明方法。(见教材)
第六章 三角函数
1. 弧度和角度的互换
180o弧度 1o180弧度0.01745弧度 1弧度(180)o57o18'
2. 扇形弧长公式和面积公式
L扇||r S扇111Lr||r2 (记忆法:与SABCah类似) 2223. 任意三角函数的定义:
sin对边y邻边x对边y= cos = tan= 斜边r斜边r邻边x4. 特殊三角函数值
sin 000 6300 4450 3600 2900 0 24 20 1 23 22 22 21 3 21 23 4 20 2不存在 cos tan 3 35. 三角函数的符号判定 (1) (2)
口诀:一全二正弦,三切四余弦。(三角函数中为正的,其余的为负) 图像记忆法
6. 三角函数基本公式
tansin (可用于化简、证明等) cossin2cos21 (可用于已知sin求cos;或者反过来运用)
7. 诱导公式:口诀:奇变偶不变,符号看象限。 解释:指k2(kZ),若k为奇数,则函数名要改变,若k为偶数函数名不变。
7. 已知三角函数值求角:
(1) 确定角所在的象限; (2) 求出函数值的绝对值对应的锐角'; (3) 写出满足条件的0~期(同终边的角的集合)
专业 知识分享
2的角; (4) 加上周
完美WORD格式
8. 和角、倍角公式
⑴ 和角公式:sin()sincoscossin 注意正负号相同 cos()coscossinsin 注意正负号相反
tan()tantan
1tantan⑵ 二倍角公式: sin2 tan22sincos cos2cos2sin22cos2112sin2
2tan
1tan2⑶ 半角公式: sin21cos1cos cos 2229. 三角函数的图像与性质
函数 图像 性 质 定义域 值域 同期 奇偶性 单调性 ysinx xR [1,1] T2 奇 ] 23[2k,2k]222 [2k,2k ycosx xR [1,1] T2 [2k,2k] 偶 [2k,2k] 9. 正弦型函数yAsin(x) (A0,0)
(1)定义域R,值域[A,A] (2)周期:T2
(3)注意平移的问题:一要注意函数名称是否相同,二要注意将x的系数提出来,再看是怎样平移的。 (4)yasinxbcosx10. 正弦定理
a2b2sin(x)
专业 知识分享
完美WORD格式
abc2R (R为ABC的外接圆半径) sinAsinBsinC其他形式:(1)a2RsinA b2RsinB c2RsinC(注意理解记忆,可只记一个) (2)a:b:csinA:sinB:sinC
11. 余弦定理
b2c2a2 (注意理解记忆,可只记一个) abc2bccosA cosA2bc22212. 三角形面积公式
SABC111absinCbcsinAacsinB (注意理解记忆,可只记一个) 22213. 海式:SABCP(Pa)(Pb)(Pc)(其中P为ABC的半周长,P第七章 平面向量
abc) 21. 向量的概念
(1) 定义:既有大小又有方向的量。
(2) 向量的表示:书写时一定要加箭头!另起点为A,终点为B的向量表示为AB。 (3) 向量的模(长度):|AB|或|a|
(4) 零向量:长度为0,方向任意。
单位向量:长度为1的向量。
向量相等:大小相等,方向相同的两个向量。 反(负)向量:大小相等,方向相反的两个向量。
2. 向量的运算 (1) 图形法则
三角形法则 平形四边形法则
(2)计算法则
加法:ABBCAC 减法:ABACCA
(3)运算律:加法交换律、结合律 注:乘法(内积)不具有结合律
3. 数乘向量:a (1)模为:|||a| (2)方向:为正与a相同;为负与a相反。 4. AB的坐标:终点B的坐标减去起点A的坐标。 AB(xB5. 向量共线(平行):唯一实数,使得axA,yByA)
b。 (可证平行、三点共线问题等)
专业 知识分享
完美WORD格式
6. 平面向量分解定理:如果e1,e2是同一平面上的两个不共线的向量,那么对该平面上的任一向量a,都存在唯一的
一对实数x1,x2,使得ax1e1x2e2。
7. 注意ABC中,重心(三条中线交点)、外心(外接圆圆心:三边垂直平分线交点)、内心(内切圆圆心:三角平分
线交点)、垂心(三高线的交点) 8. 向量的内积(数量积)
(1) 向量之间的夹角:图像上起点在同一位置;范围[0,]。 (2) 内积公式:ab|a||b|cosa,b 9. 向量内积的性质: (1)cosa,bab|a||b| (夹角公式) (2)a⊥bab0
(3)aa|a|2或|a|aa (长度公式)
10. 向量的直角坐标运算: (1)AB(xBxA,yByA)
y2) a(x1,y1) abx1x2y1y2
x1x2yy2,y1 22(2)设a(x1,y1),b(x2,y2),则 ab(x1x2,y111.中点坐标公式:若A(x1,y1),B(x2,y2),点M(x,y)是线段AB的中点,则x12.向量平行、垂直的充要条件:设a(x1,y1),b(x2,y2),则
a∥bx1y1 (相对应坐标比值相等) x2y2a⊥bab0x1x2y1y20 (两个向量垂直则它们的内积为0)
11. 长度公式
(1) 向量长度公式:设a(x,y),则|a|x2y2
AB|(x2x1)2(y2y1)2
(2) 两点间距离公式:设点A(x1,y1),B(x2,y2),则 |12. 向量平移
x'xa1(1) 平移公式:点P(x,y)平移向量a(a1,a2)到P'(x',y'),则 记忆法:“新=旧+向量”
y'ya2(2)图像平移:yf(x)的图像平移向量a(a1,a2)后得到的函数解析式为:ya2f(xa1)
第八章 平面解析几何
1. 曲线C上的点与方程F(x,y)0之间的关系:
专业 知识分享
完美WORD格式
(1) 曲线C上点的坐标都是方程F(x,y)0的解;
(2) 以方程F(x,y)0的解(x,y)为坐标的点都在曲线C上。
则曲线C叫做方程F(x,y)0的曲线,方程F(x,y)0叫做曲线C的方程。
2. 求曲线方程的方法及步骤: (1) 设动点的坐标为(x,y);(2) 写出动点在曲线上的充要条件;(3) 用x,y的关系
式表示这个条件列出的方程;(4) 化简方程(不需要的全部约掉);(5)证明化简后的方程是所求曲线的方程。如果方程化简过程是同解变形的话第五步可省略。 3. 两曲线的交点:联立方程组求解即可。 4. 直线:
(1) 倾斜角:一条直线l向上的方向与x轴的正方向所成的最小正角叫这条直线的倾斜角。其范围是[0,) (2) 斜率:①倾斜角为90的直线没有斜率;②k0tan(倾斜角的正切)
③经过两点P1(x1,y1),P2(x2,y2)的直线的斜率K(3) 直线的方程 ① 两点式:
y2y1 (x1x2)
x2x1yy1xx1 ② 斜截式:ykxb y2y1x2x1③ 点斜式:yy0k(xx0) ④ 一般式:AxByC0
注:1.若直线l 方程为3x+4y+5=0,则与l平行的直线可设为3x+4y+C=0;与l垂直的直线可设为4X-3Y+C=0
2.求直线的方程最后要化成一般式。 (4) 两条直线的位置关系
l1:yk1xb1 l2:yk2xb2 k1k2且b1b2 l1:A1xB1xC10 l2:A2xB2xC20 l1与l2平行 A1B1C2 A2B2C2A1B1C2 A2B2C2A1B1 A2B2l1与l2重合 l1与l2相交 l1⊥l2 (5)点到直线的距离
k1k2且b1b2 k1k2 k1k21 A1A2B1B20 注:系数为0的情况可画图像来判定。
①点P(x0,y0)到直线AxByC0的距离:d5. 圆的方程
|Ax0By0C|AB22
专业 知识分享
完美WORD格式
(1) 标准方程:(xa)(yb)r(r222220)其中圆心(a,b),半径r。
22(2) 一般方程:xyDxEyF0(DE4F0)
DE圆心(,) 半径:r22D2E24F
2(4)直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d和半径r比较。
dr相交; dr相切; dr相离
6. 椭圆
动点与两定点(焦点)的距离之和等于常数2a 几何定义 |PF1||PF2|2a x2y221(焦点在x轴上) 2abx2y221(焦点在y轴上) 2ba标准方程 图像 a,b,c的关系 对称轴与对称中心 顶点坐标 焦点坐标 a2b2c2 注意:通常题目会隐藏这个条件 x轴:长轴长2a;y轴:短轴长2b;O(0,0) (a,0) (0,b) (c,0) 焦距2c 注:要特别注意焦点在哪个轴上 离心率
7. 双曲线
cb2e121 aa动点与两定点(焦点)的距离之差的绝对值等于常数2a 几何定义 ||PF1||PF2||2a x2y221(焦点在x轴上) 2aby2x221(焦点在y轴上) 2ab标准方程 专业 知识分享
完美WORD格式
图像 a,b,c的关系 对称轴与对称中心 顶点坐标 焦点坐标 c2a2b2 注意:通常题目会隐藏这个条件 x轴:实轴长2a;y轴:虚轴长2b;O(0,0) (a,0) (c,0) 焦距2c 注:要特别注意焦点在哪个轴上 离心率 cb2e121 aaybx(焦点在x轴上) ayax(焦点在y轴上) b渐近线 注:等轴双曲线:(1)实轴长和虚轴长相等a8. 抛物线
几何b(2)离心率e2(3)渐近线yx
到定点的距离与到定直线的距离相等的点的轨迹 定义 |MF|d(d为抛物线上一点M到准线的距离) 焦点位置 x轴正半轴 x轴负半轴 y轴正半轴 y轴负半轴 图像 标准方程 焦点 y22px(p0) y22px(p0) x22py(p0) x22py(p0) pF(,0) 坐标 2准线px 方程 2F(p,0) 2px 2pF(0,) 2py 2pF(0,) 2py 2 专业 知识分享
完美WORD格式
顶点 对称轴 离心率 注:(1)O(0,0) x轴 e1 y轴 p的几何意义表示焦点到准线的距离。 (2) 掌握焦点在哪个轴上的判断方法
(3)圆锥曲线中凡涉及到弦长,都可用联立直线和曲线的方程求解再用弦长公式:
|AB|1k2(x1x2)24x1x2
(4)圆锥曲线中最重要的是它本身的定义!!做题时应注意圆锥曲线上的点是满足圆锥曲线的定义的!
第九章 立体几何
1. 空间的基本要素:点、线、面
注:用集合符号表示空间中点(元素)、线(集合)、面(集合)的关系 2. 平面的基本性质 (1) 三个公理:
① 如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
② 如果两个不重合的平面有一个公共点,那么它们的所有公共点组成的集合是过该点的一条直线。 ③ 经过不在同一条直线上的三点,有且只有一个平面。 (2) 三个推论:
① 经过一条直线和这条直线外的一点,有且只有一个平面。 ② 经过两条相交直线,有且只有一个平面。 ③ 经过两条平行直线,有且只有一个平面。 3. 两条直线的位置关系:
(1) 相交:有且只有一个公共点,记作“ab b.平行于同一条直线的两条直线平行 (3) 异面:
① 定义:不同在任何一个平面内的两条直线
② 异面直线的夹角:对于两条异面直线,平移一条与另一条相交所成的不大于
角时可作其中一条的平行线,让它们相交。 4. 直线和平面的位置关系:
A”
(2) 平行:a.过直线外一点有且只有一条直线与该直线平行。
的角。注意在找异面直线之间的夹2
(2) 直线与平面相交:lA
(1) 直线在平面内:l(3) 直线与平面平行
① 定义:没有公共点,记作:l∥
② 判定:如果平面外一条直线与平面内一条直线平行,则该直线与平面平行。
③ 性质:如果一条直线与一平面平行,且过直线的另一平面与该平面相交,则该直线与交线平行。 5. 两个平面的位置关系 (1) 相交:l
专业 知识分享
完美WORD格式
(2) 平行:
① 定义:没有公共点,记作:“∥”
② 判定:如果一个平面内有两条相交直线与另一个平面都平行,则两平面平行 ③ 性质: a.两个平行平面与第三个平面都相交,则交线互相平行
b.平行于同一平面的两个平面平行
c.夹在两平行平面间的平行线段相等
d.两条直线被三个平行平面所截得的对应线段成比例
6. 直线与平面所成的角:
(1) 定义:直线与它在平面内的射影所成的角 (2) 范围:[0,2]
7. 直线与平面垂直
(1) 判定:如果一条直线垂直于平面内的两条相交直线,则该直线与平面垂直 (2) 性质:
① 如果一条直线垂直于一平面,则它垂直于该平面内任何直线; ② 垂直于同一平面的两直线平行; ③ 垂直于同一直线的两平面平行。 8. 两个平面垂直
(1) 判定定理:如果一个平面经过另一个平面的垂线,则两个平面互相垂直。
(2) 性质定理:如果两个平面垂直,则一个平面内垂直于它们的交线的直线与另一个平面垂直。 9. 二面角
(1) 定义:过二面角l的棱上一点O,分别在两半平面内引棱l的垂线OA、OB,则AOB为二面角的
平面角
(2) 范围:[0,]
(3) 二面角的平面角构造:
① 按定义,在棱上取一点O,分别在两半平面内引棱的垂线OA、OB,则AOB即是 ② 作一平面与二面角的棱垂直,与两半平面分别交于OA、OB,AOB即是
第十章 排列、组合与二项式定理
1.分类用加法:Nm1m2mn 分步用乘法:Nm1m2mn 2.有序为排列:Pnn(n1)(n2)(nm1)mn!
(nm)!Pnmn(n1)(n2)(nm1)n!无序为组合:Cm m!m!(nm)!Pmmn阶乘:Pnn!n(n1)(n2)321 规定:0!1 Cn0n1
专业 知识分享
完美WORD格式
注:(1)做排列组合题的原则:先特殊,后一般!
(2)在一起,用捆绑法;不在一起,用插空法;另外的思考方法:一般法、排除法、分类讨论法、机会均等法等等。 3.组合数的两个性质:(1)Cn4.二项式定理:
0n01n11rnrrn11n1n0n(ab)nCnabCnabCnabCnabCnab
mnmmmm1 (2)Cn1CnCn Cn通项:Tr1rrnrr叫做第r1项的二项式系数。 Cnab,其中Cnr注:(1)二项展开式中第r1项的系数与第r1项的二项式系数Cn是两个不同的概念。 (2)杨辉三角 1. 二项式系数的性质
(1) 除每行两端的1以外,每个数字都等于它肩上两数之和,即Cn1(2) 与首末两端等距离的两项的二项式系数相等,即Cn(3)
rnr Cnrrr1 CnCnn1项) 2n1 n为奇数,展开式有偶数项,中间两项的二项式系数最大。(第项和后一项)
2(第n为偶数,展开式有奇数项,中间项的二项式系数最大;
01mnn024135n17. CnCnCnCn2 CnCnCnCnCnCn2
第十一章 概率与统计
一、概率.
1. 概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.
2. 等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每
一个基本事件的概率都是
1m,如果某个事件A包含的结果有m个,那么事件A的概率P(A). nn3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生(即A、B中
②对立事件:两个事件必有一个发生的互斥事件叫对立事件. ...............注意:i.对立事件的概率和等于1:P(A)P(A)P(AA)1.
ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.
③相互事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互事件.
有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。
如果两个相互事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P(AB)等于这两个事件发生概率之积,这时我们也可称这两个事件为事件.
④重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验
是的. 如果在一次试验中某事件发生的概率为P,那么在n次重复试验中这个事件恰好发生k次的概率:
knk. Pn(k)CknP(1P)二、随机变量.
1. 随机试验的结果应该是不确定的.试验如果满足下述条件:
专业 知识分享
完美WORD格式
①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是
恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.
它就被称为一个随机试验.
2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随
机变量。
设离散型随机变量ξ可能取的值为:x1,x2,,xi,
ξ取每一个值x1(i1,2,)的概率P(xi)pi,则表称为随机变量ξ的概率分布,简称ξ的分布列.
P x1 x2 … xi … pi … … p2 有性质①p10,i1,2,; ②p1p2pi1. 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:[0,5]即可以取0~
p1 5之间的一切数,包括整数、小数、无理数.
3. ⑴离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次重复
试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次重复试验中这个事件恰好发生k次的概率是
kPn(k)Cnpkqnk,(k=0,1,2,…,n,q1p).
于是得到随机变量ξ的概率分布如下: 0 1 P 由于Cnpqkknk…k …nn n000nCnpq 11n1Cnpq kknk…npq C…Cnpq 恰好是二项展开式
00n11n1knn0(qp)nCnpqCnpqCnpkqnkCnpq
中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并
记Cnpqkknk=b(k;n,p).
⑵二项分布的判断与应用.
①二项分布,实际是对n次重复试验.关键是看某一事件是否是进行n次重复,且每次试验只有两种结
果,如果不满足此两条件,随机变量就不服从二项分布.
②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此
时可以把它看作重复试验,利用二项分布求其分布列.
三、数学期望与方差.
1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为
P 型随机变量取值的平均水平.
x1 x2 p2 … … xi … … p1 pi 则称Ex1p1x2p2xnpn为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散2. 二项分布的数学期望:Enp 其分布列为~B(n,p).(P为发生的概率)
3.方差、标准差的定义:当已知随机变量ξ的分布列为P(xk)pk(k1,2,)时,则称
D(x1E)2p1(x2E)2p2(xnE)2pn为ξ的方差。 显然D0,故D.为ξ的根方差或标准差。随
机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.D越小,稳定性越高,波动...........越小. ...
4.二项分布的方差:Dnpq
5. 期望与方差的关系:DE2(E)2 四、正态分布.(基本不列入考试范围)
专业 知识分享
完美WORD格式
1.密度曲线与密度函数:对于连续型随机变量ξ,位于x轴上方,ξ落在任一区间[a,b)内的概率等于它与x
轴.直线xa与直线xb所围成的曲边梯形的面积
(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数f(x)叫做ξ的密度函数,由于“x(,)” 是必然事件,故密度曲线与x轴所夹部分面积等于1.
2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:f(x)xab22▲yy=f(x)12e(x)2. (xR,,为常数,且
,称ξ服从参数为,的正态分布,用~N(,2)表示.f(x)的表达式可简记为N(,2),它的密度曲线简0)称为正态曲线.
⑵正态分布的期望与方差:若~N(,2),则ξ的期望与方差分别为:E,D2 ⑶正态曲线的性质.
①曲线在x轴上方,与x轴不相交. ②曲线关于直线x对称.
③当x时曲线处于最高点,当x向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲
线.
④当x<时,曲线上升;当x>时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,
向x轴无限的靠近.
⑤当一定时,曲线的形状由确定,越大,曲线越“矮胖”.表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.
3. ⑴标准正态分布:如果随机变量ξ的概率函数为(x)12ex22(x),则称ξ服从标准正态分布.
即~N(0,1)有(x)P(x),(x)1(x)求出,而P(a<ξ≤b)的计算则是P(ab)(b)(a).
注意:当标准正态分布的(x)的X取0时,有(0)0.5,当(x)的X取大于0的数时,有(x)0.5,如图.
▲yS⑵正态分布与标准正态分布间的关系:若~N(,)则ξ的分布函数通 常用F(x)表示,且有P(ξx)F(x)(2xμ). σxa标准正态分布曲线S阴=0.5Sa=0.5+S
4.⑴“3”原则.
假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正
态分布N(,2).②确定一次试验中的取值a是否落入范围(3,3).③做出判断:如果a(3,3),接受统计假设. 如果a(3,3),由于这是小概率事件,就拒绝统计假设.
⑵“3”原则的应用:若随机变量ξ服从正态分布N(,2)则 ξ落在(3,3)内的概率为99.7% 亦
即落在(3,3)之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布)。
专业 知识分享
因篇幅问题不能全部显示,请点此查看更多更全内容